
RAJA: Portable
Performance for Large-Scale Scientific Applications

David Alexander Beckingsale, Jason Burmark, Rich Hornung, Holger Jones , William Killian,
Adam J. Kunen, Olga Pearce, Peter Robinson, Brian S. Ryujin, Thomas R. W. Scogland

Lawrence Livermore National Laboratory
Livermore, CA 94550

Emails: {beckingsale1, burmark1, hornung1, holgerjones, killian4, pearce8, kunen1, robinson96, ryujin1, scogland1}@llnl.gov

Abstract—Modern high-performance computing systems are
diverse, with hardware designs ranging from homogeneous multi-
core CPUs to GPU or FPGA accelerated systems. Achieving desir-
able application performance often requires choosing a program-
ming model best suited to a particular platform. For large codes
used daily in production that are under continual development,
architecture-specific ports are untenable. Maintainability re-
quires single-source application code that is performance portable
across a range of architectures and programming models.

In this paper we describe RAJA, a portability layer that
enables C++ applications to leverage various programming
models, and thus architectures, with a single-source codebase.
We describe preliminary results using RAJA in three large
production codes at Lawrence Livermore National Laboratory,
observing 17×, 13× and 12× speedup on GPU-only over CPU-
only nodes with single-source application code in each case.

I. INTRODUCTION

In recent decades, high-performance computing (HPC)
application performance has increased dramatically without
requiring major code changes. Developers have been able to
advance algorithms and code capabilities while architectures
have remained largely homogeneous and CPU clock rates have
increased. Typically, coarse-grained distributed parallelism via
MPI was sufficient to achieve high performance on relevant
HPC platforms. There was little benefit to exposing fine-
grained on-node parallelism, such as OpenMP multithreading
or tasking.

Earlier architecture paradigm shifts, such as the transition
from vector machines to symmetric multiprocessors (SMPs),
were separated by decades. These gaps allowed developers
time to rewrite applications, if needed. Currently, the Advanced
Simulation and Computing (ASC) Program in the Department
of Energy (DOE) interleaves procurement of large commodity
technology systems (CTS) and advanced technology
systems (ATS) in 3-5 year cycles. The rapid pace of disruptive
changes in ATS node architectures presently forces developers
to tackle substantial performance portability challenges.

RAJA grew out of a need to support large scale production
multi-physics applications in the Lawrence Livermore National
Laboratory (LLNL) ASC program on new ATS platforms, such
as Sierra, which place significant constraints on programming
methodologies:

• Large code bases. Applications contain O(100K) −
O(1M) source lines and many numerical kernels (some-

times O(10K)). Often, no kernels dominate run time;
thus, any portability approach must apply across most
of a codebase without per-kernel code modification or
tweaking.

• Platform diversity. Codes are routinely run on laptops
(Windows, Linux, Mac OS), commodity clusters, and
first-of-a-kind ATS machines, so they must run well on a
diverse set of architectures at any given time.

• Long service lives. Codes are used daily in production
for decades to perform critical calculations, so they must
remain viable over several platform generations.

• Continual development. New modeling capabilities must
be added throughout the lifetimes of the codes to meet
programmatic needs. Thus, adopting new technologies
cannot disrupt developers or users.

Given these constraints, platform-specific variants of the
applications are not tenable due to limited developer resources,
time, and mission priorities. RAJA [1] is a C++ abstraction
layer, developed at LLNL, that enables performance portability
within the application constraints described above. The main
goal of RAJA is to enable manageable performance portability,
and avoid committing to fixed software technology choices
based on current hardware designs, since there is no clear “best
choice” for all architectures presently. Applications may choose
to adopt RAJA incrementally at any scale, from a single kernel
to an entire codebase. Also, platform-specific data accesses
and parallel execution concerns can be insulated from source
code that most developers work with daily. Finally, portability
must be built into a code and maintained over its lifetime
without major disruption to developer and user productivity.

RAJA targets loop-level parallelism for C++ applications
by relying solely on standard C++11 language features for its
external interface and common programming model extensions,
such as OpenMP and CUDA, for its implementation. RAJA de-
velopers include: computer science researchers and application
developers working closely together and with compiler, system
software, and tool vendors. Thus, its requirements and features
are determined directly from needs of production applications.

It is important to note that, from its start, RAJA has been
designed to be agnostic to the strategy employed by users
to manage memory, in particular to make simulation data
available on offload devices. That said, there exist other



libraries we have developed to complement RAJA and simplify
the management of hierarchical memory systems for users.
These tools are discussed in Section III-E.

This paper makes the following specific contributions:
• It introduces RAJA, an open source C++ standard-based

portability layer;
• It presents an evaluation of RAJA in both benchmarks

and initial use in production applications.
In Section II, we discuss different approaches to portable

application development and motivate RAJA. Then, we describe
RAJA features in Section III. In Section IV, we present RAJA
results from benchmarks and preliminary evaluation in three
production applications. Lastly, we discuss RAJA limitations,
future work and conclusions in Section VI and Section V.

II. BACKGROUND AND MOTIVATION

Portability can be achieved at a programming model or
application level. A portable programming model eliminates the
need to implement a custom solution, but leaves applications at
the mercy of vendor implementations of chosen models. More-
over, different models have unique programming characteristics
and are not easily interchangeable. Yet, interchangeability
is necessary to assess performance and manage portability.
Application level techniques require significant effort, but
reduce reliance on a specific implementation. In this section, we
describe both programming model and application techniques.

A. Programming Models

There has been a clear trend in HPC toward node-level
parallel programming models that extend programming
languages, like C and C++, via compiler directives and library
routines. OpenMP, OpenACC, CUDA, and other models
can support multithreading and/or processor heterogeneity
where CPUs and accelerators are combined. Compiler vendors
support these models well, making them viable for production
codes. However, no existing model is a clear best choice for
all architectures and applications.

Directive offload models like OpenMP [2], OpenACC [3],
and HMPP [4] use directives to extend base languages such as
Fortran, C, and C++ with heterogeneous offload capabilities.
OpenMP is best known for providing portable multithreading
on shared-memory multicore systems. In simplest usage, a
loop can be parallelized by adding an omp parallel for
directive. More recent versions of OpenMP, as well as
OpenACC and HMPP, have support for offloading regions
of code and loops to (potentially) non-CPU devices. Support
for accelerators in OpenMP continues to improve, with many
features added over the past few years. While compiler support
is improving, none of these models has a well-established base
of implementations such that they can be viewed as portable
for production codes today.

Block and grid models such as CUDA [5], OpenCL [6] and
HCC [7] are usually built with their own compilers somewhat
independent of a base language. CUDA and HCC take a single
source approach, using the nvcc and HCC-clang compilers
respectively, while OpenCL expects all host code to be

compiled with a normal non-OpenCL toolchain and provides
architecture-specific compilers for its kernel languages. They
each provide a low-level interface to a relatively specific
batch-processing device that models GPUs well. GPU threads
are grouped as a grid of thread blocks, which are mapped to
GPU multiprocessors. These models often require programmers
to transform code significantly. With the exception of OpenCL,
which requires even more code modification due to its lack
of single source support, they are non-portable. The SYCL [8]
extension to OpenCL takes a hybrid approach that provides
a C++-like veneer on top of OpenCL, which should provide
single source portability, but it is still maturing.

B. Application Level

Application level techniques leverage programming
languages and libraries to provide portability between
programming models and architectures. They are restricted
to operate within the rules of the base language, but depend
less on a specific implementation since they only require a
compiler for the base language to produce working code.

1) Multiple code versions: One approach to portable code is
to write a version of a code for each target platform and switch
between implementations. This gives developers complete
control to tune for each platform and some applications are
small enough that this route is manageable. However, for
the production codes we discuss in this paper, this is not a
practical solution. For example, many variants of LULESH,
a proxy for ALE3D (Section IV-C), have been developed [9].
But, there is no practical path to transition all of ALE3D to
the approach taken in any one of these exercises.

2) Macros: A simple technique to write portable application
code is to use preprocessor macros for architecture-dependent
parts of a code. At compile time, macros are replaced with ap-
propriate architecture-specific code. Such a model can achieve
high portability and can eliminate runtime overhead compared
associated with other abstraction approaches. However, macros
can obfuscate code for debuggers and compiler diagnostics.

3) Existing Libraries: Libraries are another potential
portability alternative to programming models. Notably the
C++17 standard library offers parallel algorithms designed
to be portable across architectures. While they are portable,
memory handling in distributed memory nodes is ill-defined,
and support for custom algorithms is limited. The Kokkos
library [10] provides portability across memory systems
and compute platforms. It has been shown to provide good
performance and supports a wide range of programming model
back-ends. While similar in spirit to RAJA, Kokkos constrains
users to specific algorithm and memory access patterns and
may be considered more disruptive for some users. In contrast,
RAJA focuses on ease of expression and reducing impact on
application code. Agency [11] is another C++ library with
similar portability goals, focusing on describing execution by
assigning work to groups of execution agents. However, it is
an experimental effort and its long-term support is unclear.



C. Why RAJA?

RAJA began about 7 years ago to explore the potential of C++
abstractions to enable performance portability in LLNL ASC
applications, which are written mostly in C++. We realized the
potential advantages of an abstraction layer that could insulate
large application codes from architectural differences and per-
formance tuning exercises. The fact that these applications also
needed to prepare for Sierra [12], a 125 petaflop ATS machine –
the first production GPU-enabled computing platform at LLNL
– helped focus RAJA development and assessment efforts. We
hoped that we could develop the proper software tools that
would allow us to port to GPU systems while maintaining high
performance on other production systems with designs such
as commodity CPU and IBM BlueGene architectures.

Without an abstraction layer, applications would have needed
to use CUDA or OpenMP directly to target GPUs. CUDA, while
a mature technology, was untenable due to substantial code
rewriting, maintenance burden, and lack of portability. OpenMP
GPU support, both features and compilers, were portable but
nascent and not production ready at the time. The hope was
that a C++ abstraction layer would enable access to different
programming models and would not be overly disruptive to
code team productivity. Existing C++ abstraction layers were
viewed as insufficiently flexible, either requiring too much code
rewriting, too many fundamental algorithmic or data structure
changes, or lacking adequate support for incremental adoption.

RAJA has matured into a powerful set of general
performance portable capabilities (see Section III) that have
proven to be a boon to porting LLNL codes to Sierra. Also,
as it has been adopted by different codes, important features
have been developed that are unique to RAJA. These include:
support for critical looping patterns, such as fixed stride or
arbitrary indexing (i.e., indirection) within a single kernel,
portable reduction types that do not require reduction-specific
loop execution mechanisms, integration with a variety of
heterogeneous memory space management approaches that are
decoupled from RAJA, and support for complex nested loop
patterns with facilities for generating multiple nesting orders
and variations for performance tuning and specialization.

III. THE RAJA PORTABILITY LAYER

RAJA provides C++ abstractions that enable users to make
their code portable with manageable source code changes.
RAJA does this by encapsulating loop and region execution
and keeping the application description of the computation
within loops largely unchanged. For example, consider the
following C/C++-style daxpy loop:

for (int i = 0; i < N; ++i)
{
a[i] += c * b[i];

}

The equivalent RAJA version keeps the loop body the same1:

RangeSegment seg (0, N);
forall<loop_exec> (seg, [=] (int i) {

1The RAJA namespace is omitted in all examples for readability

a[i] += c * b[i];
});

The RAJA abstraction accepts a C++ functor, which is
usually produced by using the C++11 lambda facility by the
user, which in this paper we refer to as a lambda kernel
body. In real applications, kernel bodies are much larger than
the one in the simple example above. Modifying the loop
header only and leaving the kernel body unmodified means
that most lines of code in a thread-safe application do not
change as it is converted to use RAJA.

The daxpy example above shows three main RAJA concepts:
1) execution policies (loop_exec), 2) iteration spaces
(seg), and 3) execution templates (forall). The following
subsections describe these concepts.

A. Concepts

1) Execution Policy: An execution policy is a C++ type
that specifies how a loop kernel will run. A policy can specify
which programming model back-end to use (see Section III-B),
or it may be a complex composition of simpler policies. Nesting
or aggregation of execution policies gives users flexibility
to easily access powerful features of parallel programming
models, such OpenMP and CUDA. RAJA execution policies
also encode traits that help drive code generation via template
specialization: each policy defines a policy type, an execution
template, a launch category, and an execution platform.

A policy type refers to a known execution back-end; e.g.,
sequential, OpenMP, CUDA, etc. An execution template
type validates, at compile time, whether an execution policy
is used within a correct context; e.g., a user should not
use a loop execution policy within a scan or reduction
type. A launch category specifies how code will be launched
(synchronously, asynchronously, or undefined). Finally, an
execution platform type describes where the loop will execute,
and can be used to determine which memory space will be
accessed. Policy types specialize RAJA execution templates,
and RAJA provides a variety of execution policies; users can
also define their own policies to customize RAJA.

2) Iteration Space: A RAJA iteration space defines a set of
loop indices for a kernel. Index access operations are guaranteed
to be constant in time and portable across single-core, multicore,
and GPU offload execution. An object that models the random
access container concept can be used as an iteration space. In-
deed, RAJA iteration space containers and generators are similar
to C++ standard library containers and conform to that concept.

RAJA defines two categories of iteration spaces: segments
and index sets. A segment defines a set of loop indices to be
executed as a unit, and an index set is a container of arbitrary
segments to be run with a single kernel. Segments directly
map to simple for-loop patterns and RAJA provides three
segment types: RangeSegment which defines a stride-one
index range, RangeStrideSegment which defines a
constant-stride index range, and ListSegment which is
an arbitrary set of indices, akin to an indirection array. Any
RAJA segment type can be used with any loop body.



Index sets provide power and flexibility by enabling
execution of a collection of segments, each of which can
be operated on independently. Index sets require a two-level
execution policy, one for iterating over segments and one
for executing the segments. This is a specialization designed
to help optimize performance and expressibility in sparse
iteration spaces, especially in cases where sub-ranges contain
contiguous indices. Expressing such sub-ranges as contiguous
segments allows RAJA to vectorize portions of kernel execution
while allowing irregular indexing patterns on the rest.

3) Execution Template: RAJA execution templates define op-
erations performed on a lambda kernel body based on execution
policy specialization and an iteration space object. RAJA pro-
vides several execution templates. Most common is forall,
which follows the parallel-for idiom and maps directly to a
traditional C-style for-loop, or a C++11 range based for-loop.

Some kernels have more complex structure, such as a loop
nest, that do not map well to the forall construct. RAJA
provides more complex execution templates via its kernel
interface. A RAJA kernel template enables composition of
multiple policies and iteration spaces to define a kernel
structure within the C++ type system. RAJA forall and
kernel policies are discussed in Subsection III-C.

Another set of execution templates that RAJA provides
supports portable scan operations. Scans are used commonly
in parallel work assignment, sorting, comparison, and stream
compaction as a method to parallelize otherwise serial work.
RAJA provides four scan types: inclusive, exclusive, inclusive
in-place, and exclusive in-place. A RAJA scan template
requires an execution policy, an input iterable or begin/end
iterators, and an optional operator. RAJA has predefined
operators for all C++ standard library function objects such as
plus and multiply but can also take an arbitrarily complex
user-defined operator to apply in a prefix scan pattern.

RAJA provides two other classes of templates that do not
implement loop traversals. They provide users the ability
to perform reduction and atomic operations specialized on
policies similar to execution templates. RAJA supplies five
different reduction operations, each accepting a reduction
policy and an underlying storage type:

• ReduceSum: sum of all values
• ReduceMax: maximum value
• ReduceMin: minimum value
• ReduceMaxLoc: max value, plus index of max value
• ReduceMinLoc: min value, plus index of min value
A reduction policy must be compatible with the execution

policy given to the forall or kernel construct in which
the reduction is used (see example below). For instance, one
cannot use an OpenMP reduction policy in a CUDA execution
context. Since reductions are independent of the execution
template, arbitrary other computation can be done in the same
loop, along with any number of reductions of arbitrary types. 2

2A RAJA reduction operation can only apply its reduction operation within
a lambda expression. Setting a “local” value to some arbitrary expression
result is not supported.

ReduceMaxLoc<RedPol, double> max(0, -1);
forall<ExecPol> (iSpace, [=] (int i) {
max.maxloc(a[i], i);

});
double val = max.get();
int loc = max.getLoc();

RAJA portable atomic operations appear similar to the
interface provided by CUDA. Like reductions, atomic policies
depend on the execution context in which they are used. RAJA
also provides an “automatic” atomic policy that deduces the
correct atomic policy in GPU/CUDA, OpenMP, and sequential
CPU execution contexts. An example of RAJA atomic usage is:

double* sum = new double[1]; *pi = 0.0;
forall<ExecPol> (iSpace, [=] (int i) {
atomicAdd<auto_atomic>(sum, a[i]);

});
double res = *sum;

Lastly, RAJA provides atomic references and atomic views
over containers that are compatible with arbitrary memory loca-
tions and work with all atomic policies. An example of usage is:

int v = 1;
AtomicRef<int, omp_atomic> sum(&v);
++sum;
sum += 5;

The RAJA AtomicRef interface is consistent with the
C++20 std::atomic_ref definition.

B. Supported Back-ends

As of release v0.9.0, RAJA supports execution policies for
the following back-ends:

• sequential: forced sequential execution;
• simd: forced SIMD optimizations;
• loop: allows compiler to optimize according to its

heuristics;
• openmp: OpenMP CPU multithreading;
• openmp_target: OpenMP with target offload;
• cuda: NVIDIA CUDA execution; and,
• tbb: Intel Threading Building Blocks.
Currently, only sequential, loop, openmp, and cuda

support all RAJA features described in the previous section.
Other back-ends are works-in-progress and support a subset
of features. For example, reductions are not guaranteed to
be correct when using simd. The Intel TBB back-end lacks
kernel execution policy specializations. Support for reduc-
tions and kernel policies in OpenMP with target offload is
under development as is a full-featured back-end for AMD HIP.

C. Policy Implementation

A RAJA execution policy ties a loop execution to a
particular programming model. For example, loop_exec
uses a standard for-loop. The specialization of the forall
traversal template looks like this:

auto begin = std::begin(iter);
auto end = std::end(iter);
auto dist = std::distance(begin, end);
for (decltype(dist) i = 0; i < dist; ++i) {



loop_body(begin[i]);
}

A for-loop traverses the iterates in a segment. For each
iterate, the lambda function representing the loop body is
called with the appropriate loop index.

RAJA seq_exec and simd_exec are similar but use
for-loops decorated with compiler-specific or OpenMP
pragmas that enforce strictly sequential or SIMD execution,
respectively. The CUDA back-end is more complex since it
must launch a GPU kernel. This kernel takes a lambda as an
argument and calls it with the appropriate indices on the GPU.

The OpenMP specializations parallelize for-loops through the
use of OpenMP pragmas. The omp_parallel_for_exec
policy is implemented in two steps. Internally, RAJA will first
use the omp_parallel_exec specialization to establish a
parallel region: then it will call the omp_for_exec special-
ization to distribute iterates to threads in the parallel region.

Encapsulating more complex loop structures is done through
RAJA kernel policies. Kernel execution policies allow arbitrary
nesting of wrapper and loop policies. A kernel execution
policy can support arbitrary loop nests and specialized policies
that transform loops via tiling, collapse, fusion, etc. Multiple
lambdas are supported, for example, when data initialization
is required and a simple loop nest would not be functionally
equivalent. Kernel policies require users to indicate where
a lambda should be inserted in the compiler-generated code.
The following shows two examples:

// a policy for a double loop nest with OpenMP on inner loop.
KernelPolicy<
For<1, loop_exec,
For<0, omp_parallel_for_exec,
Lambda<0>

>
>

>

// a policy for a collapsed double loop nest with OpenMP
KernelPolicy<
Collapse<omp_parallel_collapse_exec, ArgList<1, 0>,
Lambda<0>

>
>

The primary difference for RAJA users between execution
concepts is that forall uses a single iteration space object,
while kernel supports multiple iterable spaces passed in a
tuple type. The Lambda tag indicates where a lambda is to
be inserted in the code; since multiple lambdas are supported,
this allows irregularly nested loops.

In the following example, we show a RAJA kernel for
a matrix multiplication using RAJA multi-dimensional data
views (see Section III-D):

kernel<EXEC_POL>(make_tuple(col_range, row_range),
[=] RAJA_DEVICE(int col, int row) {
double dot = 0.0;
for(int k=0; k<N; ++k)
{
dot += Aview(row,k) * Bview(k,col);

}
Cview(row,col) = dot;

});

This kernel generates the equivalent of a two-level loop nest,
one for rows and one for columns.

D. Views and Data Layouts

RAJA provides a View abstraction that wraps a pointer to
a block of memory to simplify multi-dimensional indexing
by hiding integral offset computations from user code. RAJA
also has optional strongly-typed indices with TypedView so
that users receive information about incorrect index usage at
compile-time. The RAJA AtomicViewWrapper defines a
view where all access and updates are performed atomically.

RAJA provides various layout types to specify at View
creation the multi-dimensional access pattern for a block of
memory. Examples include a common zero-based layout where
the last index has stride-one data access, a non-zero-based
(offset) index layout where the last index has stride-one data
access, and a permuted layout that can change the order of the
index stridings, allowing the memory ordering to be modified
at compile-time.

E. Memory Model

From its start, RAJA has been designed to be agnostic to the
strategy employed by users to manage memory, in particular to
make simulation data available on offload devices. The main
reason for this is the overarching goal to minimize invasiveness.
While some codes may wish to explicitly manage memory,
others may want to rely on unified memory or other mecha-
nisms. Notably, RAJA views and layouts work with arbitrary
pointers, but do not themselves manage memory placement.

That said, there are associated libraries, Umpire [13]
and CHAI [14], that applications use to manage data in
heterogeneous memory spaces. Umpire, which is used within
CHAI and can also be used standalone, provides a portable
memory management API that allows users to access a variety
of vendor and open source memory tools. Umpire provides util-
ities for allocation/deallocation, transfers and other operations,
and introspection. CHAI invokes data copies between CPU
and GPU memory spaces based on hooks into RAJA. CHAI
complements RAJA by providing a managed array abstraction
that moves data to an execution memory space, as needed
when a kernel is launched, based on a RAJA execution policy.
How this appears in application code is illustrated below:

chai::ManagedArray<double> my_data(100);
// data transferred implicitly to GPU
forall<cuda_exec>(0, 100, [=] RAJA_DEVICE (int i) {
my_data[i] = i * 3.14;

});

// copy data back for host use
double* my_data_ptr = (double*) my_data;

RAJA informs CHAI where a kernel will execute based
on an execution policy, ensuring data resides in the correct
memory space for kernel execution. CHAI allows incremental
porting of codes to RAJA with the appearance of unified
memory usage while providing effectively manual data
management. CHAI allows developers to explore manual data



Platform Nodes CPUs per node Accelerators per node

Sequoia 98,304 IBM BlueGene/Q (16 cores) N/A
Zin 2,916 Intel Sandy Bridge (16 cores) N/A

Jade 1,302 Intel Broadwell (36 cores) N/A
HasGPU 20 Intel Haswell (20 cores) 4 NVIDIA K80 GPU

Manta 36 2 IBM Power8+ (20 cores) 4 NVIDIA P100 GPU
Sierra 4,320 2 IBM Power9 (44 cores) 4 NVIDIA V100 GPU

Cori (CPU) 2,388 Intel Haswell (32 cores) N/A
Cori (KNL) 9,668 Intel Knights Landing (68 cores) N/A

TABLE I
SYSTEMS USED IN RAJA CASE STUDIES.

transfers or a vendor-specific solution like NVIDIA Unified
Memory (UM), without changing application source code.

The applications discussed in Section IV apply Umpire,
CHAI, and other techniques in various ways and combinations
to manage memory. We will describe how memory is managed
in each case

F. Application Considerations

Applications that use RAJA can easily change how and
where compute kernels run by switching execution policies.
For rapid prototyping and portability, we promote the pattern
of defining execution policies in header files. Then, an
application can be easily recompiled to run on different
platforms. Also, similar loop structures may share execution
policies across a large codebase. RAJA promotes the notion
of parameterization of loop classes so that classes of loops
can be tuned rather than individual kernels.

RAJA provides abstractions to access and operate on data in
a platform-independent way although RAJA does not provide
a memory management model. Applications can use native
memory management techniques, or other abstraction layers
to ensure data is available in a RAJA kernel. In Section IV,
we discuss how three applications address data management
on heterogeneous architectures.

IV. RAJA USE CASE STUDIES

In 2014, LLNL ASC applications started to explore the
impact of RAJA on source code and performance. Since then,
several production codes have adopted RAJA to prepare for
the Sierra system (Section II-C) with the hope that RAJA
will also be a long-term performance portability solution. In
this section, we describe the integration of RAJA into three
large application codes and report performance on various
computing platforms. We focus on comparing performance
between CPU-only and heterogeneous GPU-based systems.
The node architectures are summarized in Table I.

Before we begin discussing applications, we note several
important points. Each code manages heterogeneous memory
systems differently. Second, MPI usage for inter-node
parallelism is unchanged. Third, each team ensures that its
code remains correct via extensive regression test suites.
Fourth, each code uses RAJA as a single-source model
so there are no GPU-enabled version without RAJA to
compare to. Fifth, each code team verifies that RAJA had
no negative performance impact by ensuring that base case

Variant Description

Sequential Reference sequential impl.
RAJA Sequential RAJA sequential impl.

OpenMP Reference OpenMP CPU multithreading
RAJA OpenMP RAJA OpenMP CPU multithreading
OpenMP-target Reference OpenMP 4.5 GPU offload

RAJA OpenMP-target RAJA OpenMP 4.5 GPU offload
CUDA Reference CUDA kernel impl.

RAJA CUDA RAJA CUDA impl.

TABLE II
KERNEL VARIANTS CURRENTLY IN THE RAJA PERFORMANCE SUITE.

CPU run times of test suites do not degrade. One application
tracks performance for each change committed to its source
repository; others do so regularly, but less frequently.

The last two points imply that comparing RAJA
GPU performance against a native CUDA or OpenMP
implementation for a full application is difficult. However,
we monitor the performance of RAJA kernels compared to
non-RAJA variants using a suite described in the next section.

A. RAJA Performance Suite

As mentioned earlier, applications use RAJA as a single-
source model. So, it is necessary to compare RAJA performance
against native implementation performance another way. The
RAJA Performance Suite [15] contains a diverse set of kernels
to assess performance of RAJA features with different program-
ming models and compilers. Kernels come from stream bench-
marks, LCALS [16], [17] and Polybench [18] Suites, and real
applications. Each kernel appears in RAJA and non-RAJA vari-
ants for different programming models, summarized in Table II.

a) Implementation: The reference Sequential variant for
each kernel in the Performance Suite uses C-style for-loops.
All other RAJA and non-RAJA variants (Table II) are based
on that. All variants of each kernel share the same CPU data
allocation/deallocation and initialization routines. GPU variants
used manual CUDA or OpenMP API calls to copy data between
host and device. Data allocation/deallocation, initialization and
necessary transfers are not included in execution timings.

Each kernel has a default size (number of loop iterations)
and number of times it is run to generate execution timings.
The Suite is configurable at run time via command line
arguments to select: kernel sizes, number of samples, subsets
of kernels or variants to run, etc.

After the Suite is run, CSV-formatted text files are generated
that report execution timings, speedup of each RAJA variant
with respect to its reference variant, Figure of Merit (run time
deviation between RAJA and reference variant), and result
checksums (to verify kernel variants run correctly).

b) Results: We present results for the RAJA Performance
Suite on all HPC architectures described in Table I. All
variants supported on each platform were run, except for
OpenMP-target which is incomplete in RAJA.

Figure 1 shows performance differences between RAJA and
non-RAJA reference variants for Sequential, OpenMP, and
CUDA as histograms aggregated over all Suite kernels. The
histogram bins are limited to 100% faster or slower, and kernels



falling outside this range are placed in the first or last bin respec-
tively. The clustering around 0% shows that most kernels per-
form similarly for RAJA and reference Sequential and CUDA
variants. OpenMP shows a larger variance and more RAJA
kernels being slower than reference. This is a topic of investiga-
tions and we plan to develop variants of kernels in the Suite that
use C++ lambda expressions in loops that use OpenMP pragmas
directly without RAJA to see if we can gain further insight.
Currently, we believe the main issues are due to optimization
difficulties that C++ compilers have when OpenMP pragmas are
inserted within C++ template abstractions because many RAJA
kernels that are noticeably slower or faster than reference are
exercising identical RAJA constructs. Nevertheless, for 55%
of the cases overall, RAJA performance is within 10% of
reference variants, and in 69 out of 140 kernel and platform
pairs (49%), performance of at least one RAJA variant is better
than the reference. It is important to emphasize that the Suite
isolates performance differences between RAJA and reference
implementations for individual kernels. Real applications that
are able to run with and without RAJA for sequential execution
show nearly identical aggregate run times for both versions.

B. Ares

Ares is a massively parallel, multi-dimensional, multi-physics
code at LLNL used a wide range of calculations and problem
sizes on serial resources up to millions of processors to model
high-explosive, inertial confinement fusion, and hydrodynamics
experiments [19], [20]. Ares has over 700k lines of C/C++
code, uses MPI for distributed memory parallelism, and RAJA
for fine-grained parallelism on CPUs and GPUs. To manage
host-device data transfers on Sierra, it uses a combination of
manual operations and unified memory. Physics capabilities
ported to RAJA currently include: Lagrange and Arbitrary
Lagrangian Eulerian (ALE) hydrodynamics, equations of state,
grey radiation diffusion, material strength, thermonuclear burn,
and sliding contact surfaces.

We first consider a Rayleigh-Taylor mixing layer in a
convergent geometry in Figure 2. The full 3D simulation (4π)
has 191.1 million zones, and converges in 14,500 time cycles.
Figure 3 shows that RAJA-enabled Ares strong-scales well on
CPU-only architectures. Because the radiation-hydrodynamics
component of Ares is largely bandwidth bound, we compare the
run times on Jade, Manta, and Sierra (system details in Table I)
to the aggregate bandwidth of the system run configurations
in Figure 4. Ares performance on configurations with similar
aggregate bandwidth (e.g., 4,608 Intel Broadwell CPU or 32
NVIDIA V100 GPUs) is indeed similar. Runtime and across-
system speedup is listed in Table III, illustrating that using
GPUs via RAJA CUDA back-end results in 11×-13× speedup.

Next, we demonstrate a 191.1 million zone problem that
uses ALE hydrodynamics, dynamic species, grey radiation
diffusion, and thermonuclear burn. Runtime and speedup
are shown in Table IV; the problem can not run on 8 nodes
of Manta due to memory constraints. While we have only
recently been running such multi-physics problems on GPUs,

Cores Nodes Agg.B/W (GB/sec) Runtime (min) Speedup

Ja
de

576 16 2,080 909 1
1,152 32 4,160 454 2
2,304 64 8,320 239 3.8
4,608 128 16,640 124 7.3

M
an

ta 32 8 17,600 131 6.9
64 16 35,200 83 10.9

Si
er

ra 32 8 27,200 97 9.6
64 16 54,400 69 13

TABLE III
ARES RAYLEIGH–TAYLOR PROBLEM: SPEEDUP ACROSS SYSTEMS

Cores Nodes Agg.B/W (GB/sec) Runtime (min) Speedup

Ja
de

576 16 2,080 164.9 1
1,152 32 4,160 84.8 1.94
2,304 64 9,320 43.0 3.83
4,608 128 18,640 24.6 6.70

M
an

ta 32 8 17,600 – –
64 16 35,200 17.7 9.31

TABLE IV
ARES MULTI-PHYSICS PROBLEM: SPEEDUP ACROSS SYSTEMS

we are seeing speedups of over 9×, node-for-node, on GPU
systems vs. commodity CPU clusters.

We are beginning to realize the potential of Sierra to run high
fidelity calculations. For example, for Sierra acceptance, we
ran a 97.8 billion zone turbulent mixing problem, in 27 hours
using nearly all of the machine (4,096 nodes – 16,384 GPUs).
Such a simulation would not be possible on any CPU-only
resource allocation. Thus, Sierra makes multiple, smaller-scale,
but still very high fidelity runs, practical to complete in a work
day, which will be a substantial boon to user productivity.

C. ALE3D

ALE3D is a 2D and 3D Arbitrary Lagrangian-Eulerian
(ALE) multi-physics framework whose capabilities include:
heat conduction, chemical kinetics and species diffusion,
incompressible flow, diverse material models, chemistry models,
multi-phase flow, and magneto-hydrodynamics. ALE3D
contains over one million lines of C++ code, uses MPI for
distributed memory parallelism. It is used for small calculations
on commodity workstations, to massively parallel simulations
running on hundreds of thousands of processors. RAJA is being
integrated into ALE3D for fine-grained on-node parallelism.

Using RAJA, ALE3D currently targets both CPU and GPU
architectures and can scale from a single workstation to thou-
sands of processors. To manage host-device memory transfers
on Sierra, it uses the CHAI managed array library (see Sec-
tion III-E). Figure 5 shows ALE3D weak scaling up to 93,318
processes on the Sequoia system (See Table I for details).

Table V presents run times for two ALE3D problems, Sedov
and Shaped Charge, on four architectures. The same source
code is compiled for different architectures using appropriate
RAJA back-ends. ALE3D achieves speedups of up to 5.8×
when comparing a single GPU to one node of an Intel Haswell
CPU architecture. Using all four GPUs on a node provides
additional speedup of 3.4× over one GPU, resulting in overall



100500-50-100

0

25

50

65

% Difference

N
um

be
r

of
K

er
ne

ls
Sequential

100500-50-100

0

10

20

30

% Difference

OpenMP

100500-50-100

0

10

20

30

% Difference

CUDA

Fig. 1. Performance difference (%) between RAJA and reference variants of Performance Suite kernels on five HPC platforms. Positive values mean that
the RAJA variant is faster than the reference.

Fig. 2. Ares simulation: Rayleigh-Taylor mixing layer in a convergent
geometry, 191.1 million zones.

576 1,152 2,304 4,608

1
2
3
4
5
6
7
8

Number of Processors

Sp
ee

du
p

(×
) Ideal Speedup

Intel Broadwell

Fig. 3. Ares strong scaling up to 4,068 MPI ranks of Intel Broadwell.

2 16 35 54

56

200

400

600

800
909

Aggregate Memory Bandwidth (TB/sec)

R
un

tim
e

(m
in

ut
es

) Ideal Scaling
Jade

Manta
Sierra

Fig. 4. Ares runtime compared to aggregate bandwidth of run configuration.

16 128 1,024 8,192 27k 93.3k

0.3

0.3

0.31

0.32

0.33

Number of Processors

Ti
m

e
pe

r
cy

cl
e

(s
)

Ideal
Sequoia

Fig. 5. ALE3D weak scaling up to 93,318 processors of Sequoia.

Problem Jade Zin HasGPU Manta (1 GPU) Manta (4 GPU)

Sedov 7.319 10.23 8.288 1.794 0.616
Shaped Charge 113.229 - 173.362 67.187 19.8

TABLE V
ALE3D RUNTIME (SECONDS) USING A SINGLE NODE OF CPU OR GPU

ARCHITECTURES WITH THE APPROPRIATE RAJA BACK-END.

speedup of 17× for one GPU-enabled node vs. one CPU-only
node. For analyzing performance on both CPU and GPU archi-
tectures, the ALE3D team ran studies using three different input
problems across four architectures. These used the same code,
but changed execution policies to run on different architectures.

D. Ardra

Ardra [21] is a massively parallel neutral particle transport
code at LLNL that solves the discrete ordinates form of the
linear Boltzmann transport equation [22], a partial differential
equation with unknowns spanning seven dimensions in time,
angle, energy and space. Ardra is used to simulate nuclear
interactions of unbound neutrons and gamma rays as they move
through background materials in 1D, 2D and 3D geometries
to model nuclear reactors, criticality experiments, shielding
problems, detectors, and radiation dosages. Ardra has over
250k lines of C++, C and Fortran, and has historically used an
MPI and serial programming model. It uses MPI to decompose
space, angle, and energy (6-dimensions) across processes and



8k 125k 216k 343k 512k

1.31

4

8

11.21

Zones

Sp
ee

du
p

(J
ad

e
/

M
an

ta
)

Solve Sweep Other

Fig. 6. Ardra speedup on one node of Manta with 4 P100 GPUs vs. one
node of Jade with 36 CPU cores using various zone sizes, 48 groups, 80
directions, P4 scattering.

8k 125k 216k 343k 512k

146.8M

400M

600M

800M
1424M

Zones

Fi
gr

e
of

M
er

it
(u

nk
no

w
ns

/s
ec

/it
er

)

Manta (P100)
Jade (Broadwell)

Fig. 7. Ardra unknowns per second on one node of Manta with 4 P100
GPUs vs. one node of Jade with 36 CPU cores using various zone sizes, 48
groups, 80 directions, P4 scattering.

serial execution within each process. Computation kernels
in Ardra are mostly matrix-free matrix-vector operations.
Workloads vary greatly, from single-process 1D calculations
on thousands of unknowns on a personal computer to large
3D problems using 1.5 million MPI ranks and 47 trillion
unknowns on Sequoia (system details in Table I).

Using RAJA, Ardra now has a single source code that can
execute on both CPU and GPU architectures, including the abil-
ity to modify array layouts to optimize multi-dimensional data
layouts for each architecture at compile time. To manage host-
device data transfers on Sierra, it uses the CHAI managed array
library (see Section III-E). Figure 6 shows speedups of various
Ardra components when running on four NVIDIA P100 GPUs
(one Sierra EA system node), compared to one node (36 cores)
of Intel Broadwell CPU. Sweep speedup contains the major MPI
communications algorithm, while NonSweep contains non-MPI
algorithms. Solve is the combined speedup. This node-for-node
comparison shows speedups of nearly 12×, depending on the
problem size. A key benefit of the GPU architecture is its high
throughput, which helps with high resolution calculations.

Figure 7 shows the overall figure of merit (unknowns per
second) when running on CPU and GPU-based architectures.
These results further highlight the increased efficiency of GPU
architectures when dealing with larger problem sizes.

V. CONCLUSION

This paper presents RAJA, a C++ performance portability
layer that is central to the current state of practice for running
ASC applications on modern HPC systems at LLNL. The
development of RAJA was motivated by the need to address a
two-fold problem. First, large production codes require a model
for single-source portability to run on advanced technology
computing systems as well as various other platforms. Second,
a programming model must be sufficiently flexible to adapt
to changes in computer architecture trends. Since many
applications at LLNL are under continuous development,
maintaining hardware-specific versions is unrealistic, and
would negatively impact scientific productivity.

RAJA design and features were motivated by key algorithmic
patterns and maintenance requirements in real-world applica-
tions. This design has proven itself as RAJA has been adopted
by several production codes. These application teams have
found RAJA sufficiently flexible and robust to integrate it in
unique code-specific ways that align with each team’s tolerance
for code disruption and constraints on code maintainability.
Developers with little CS expertise find RAJA reasonably
straightforward to use.This is critical since application teams are
multi-disciplinary with most members lacking deep knowledge
of hardware and parallel programming models. Incremental,
selective adoption is achievable in a large codebase and RAJA
integrates with existing algorithms and data structures without
requiring changes to loop bodies in most cases. RAJA promotes
implementation flexibility via clean encapsulation so that
changes to execution patterns can be propagated across a large
codebase by localizing type changes in header files. The result
is that users can achieve good performance by introducing
fine-grained parallelism for loops with similar patterns
rather than tuning individual kernels. When needed, detailed
performance tuning can be done by experts without disrupting
application source code that most developers work with.

RAJA has enabled rapid progress across multiple application
teams as they prepared for Sierra while maintaining single-
source code in a production environment. Also, by easily access-
ing different programming models, the application developers
were able to bring the best tools (debuggers, thread checkers,
etc.) to bear when porting code. Furthermore, developers were
insulated from negative productivity impacts due to immature
vendor compilers and system software on new platforms.

To demonstrate RAJA’s suitability as a performance
portability model, results from benchmarks and three large-
scale ASC production codes were presented in this paper.
Prior to RAJA, each of these codes supported distributed
memory parallelism via MPI only. Each code developed a
different approach for RAJA integration and heterogeneous
memory system management, yet arrived at similar results and
conclusions. These applications show that RAJA has been used



to successfully port over 2 million lines of code so far. Most
importantly, RAJA has enabled each code to develop a single-
source, multi-architecture portability solution. GPU-only node
runtimes for Ares, ALE3D, and Ardra have shown 13×, 17×,
and 12× speedups over CPU-only node runs, respectively.

VI. FUTURE WORK

RAJA is in active development and will continue to evolve
with the needs of applications as its adoption expands. We plan
to share new user experiences and techniques for performance
portable application codes in the future.

Future RAJA work will focus on stabilizing interfaces,
adding new features, expanding back-end support for other
programming models and platforms, and working with vendors
and standards organizations to better support the performance
and maintenance of portability layers like RAJA. We also plan
to develop a flexible asynchronous queue mechanism that will
streams for GPUs from multiple vendors. Research has shown
great value in RAJA as an auto-tuning tool, but the cost of pre-
compiling every variant into a binary can be prohibitive [23].
We are exploring JIT compilation for both CPU and GPU
kernels for performance and runtime policy selection. Finally,
the RAJA reduction interface, while easy to use compared
to options that require explicit parameter passing or separate
reduction loop execution methods, is far harder to optimize and
more complicated than desired due to difficulty implementing
the highly abstract interface. We plan to pursue an alternative
reduction interface that, while being more verbose, should be
much more performant, especially for OpenMP back-ends.

ACKNOWLEDGMENT

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
LLNL-CONF-788757.

REFERENCES

[1] RAJA. [Online]. Available: https://github.com/LLNL/RAJA
[2] OpenMP ARB, “OpenMP application programming interface version

4.5,” http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf, Nov.
2015. [Online]. Available: http://www.openmp.org/wp-content/uploads/
openmp-4.5.pdf

[3] “OpenACC 2.0 Application Programming Interface Specification,”
https://www.openacc.org/sites/default/files/inline-files/OpenACC\ 2\
0\ specification.pdf, Jun. 2013.

[4] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A Hybrid Multi-Core
Parallel Programming Environment,” in GPGPU 2007: Workshop on
General Purpose Processing on Graphics Processing Units, 2007.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming in CUDA,” in ACM Queue, vol. 6, no. 2, 2008, pp. 40–53.

[6] “The OpenCL Specification,” https://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf, Nov. 2012.

[7] “HCC: Heterogeneous Compute Compiler,” https://gpuopen.com/
compute-product/hcc-heterogeneous-compute-compiler/, 2015.

[8] L. Howes and M. Rovatsou, “Sycl integrates opencl devices with modern
c++,” Khronos Group, 2015.

[9] LULESH. [Online]. Available: https://codesign.llnl.gov/lulesh.php
[10] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling

manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001257

[11] agency-library/agency. [Online]. Available: https://github.com/
agency-library/agency

[12] Sierra. [Online]. Available: https://computation.llnl.gov/computers/sierra
[13] Umpire. [Online]. Available: https://github.com/LLNL/Umpire
[14] CHAI. [Online]. Available: https://github.com/LLNL/CHAI
[15] RAJAPerf. [Online]. Available: https://github.com/LLNL/RAJAPerf
[16] R. D. Hornung and J. A. Keasler, “A case for improved c++ compiler

support to enable performance portability in large physics simulation
codes,” Tech. Rep. LLNL-TR-635681, 2013.

[17] F. H. McMahon, “The livermore fortran kernels: A computer test of
the numerical performance range,” Tech. Rep. UCRL-53745, 1986.

[18] L.-N. Pouchet. (2012) Polybench: The polyhedral benchmark suite.
[Online]. Available: http://www.cs.ucla.edu/pouchet/software/polybench

[19] R. Darlington, T. McAbee, and G. Rodrigue, “A Study of ALE
Simulations of Rayleigh-Taylor Instability,” in Computer Physics
Communications, vol. 135, 2001, pp. 58–73.

[20] B. E. Morgan and J. A. Greenough, “Large-Eddy and Unsteady RANS
Simulations of a Shock-Accelerated Heavy Gas Cylinder,” in Shock
Waves, April 2015.

[21] U. Hanebutte and P. N. Brown, “Ardra, scalable parallel code system
to perform neutron and radiation transport calculations,” Lawrence
Livermore National Laboratory, Tech. Rep. UCRL-TB-132078, 1999.

[22] E. E. Lewis and W. F. Miller, Computational methods of Neutron
Transport. La Grange Park, IL, USA: American Nuclear Society, 1993.

[23] D. Beckingsale, O. Pearce, I. Laguna, and T. Gamblin, “Apollo: Reusable
models for fast, dynamic tuning of input-dependent code,” in IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2017, pp. 307–316.



APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: [RAJA: PORTABLE PER-
FORMANCE FOR LARGE-SCALE SCIENTIFIC APPLICATIONS]

A. Abstract

This artifact contains instructions on how to reproduce the
experiments described in part IV. A of this paper, using the
open-source RAJA Performance Suite. We do not provide
instructions on how to reproduce experiments conducted using
restricted applications, as these codes cannot be made publicly
available. The output of the experiments is in text files in a
CSV format, and in this paper was plotted using PGFPlots.

B. Description

1) Check-list (artifact meta information): Fill in whatever
is applicable with some informal keywords and remove the rest

• Algorithm:
• Program: C++ code.
• Compilation:
• Binary: C++ executables generated by the RAJA Performance

Suite.
• Data set: N/A.
• Run-time environment: The experiments were produced on

five different high-performance computing platforms, with a
range of CPUs and GPUs.

• Hardware:
• Output: timings, figures of merit, and speedup values.
• Experiment workflow: clone software, configure and build

using provided scripts, run executable to generate results.
• Publicly available?: Yes.

2) How software can be obtained (if available): All open
source software used in this paper is available on GitHub. RAJA
can be obtained from the https://github.com/LLNL/RAJA,
and the RAJA Performance Suite can be obtained from
https://github.com/LLNL/RAJAPerf.

The experiments in this paper used the 0.2.3 version of the
RAJA Performance Suite, which is available under the git tag
“0.2.3”.

3) Hardware dependencies: RAJA will run on most CPUs,
and on NVIDIA GPUs. To generate the results in this paper, we
used supercomputers with the following node configurations:

• Power8+ CPU and NVIDIA P100 GPU.
• IBM BlueGene/Q CPU.
• Intel Haswell and NVIDIA K80 GPU.
• Intel Haswell CPU and Intel Xeon Phi.
4) Software dependencies: RAJA requires a compiler with

support for the C++11 standard. The oldest GCC version
supported is GCC 4.9.3. RAJA also requires CMake 3.9.2.

5) Datasets: The RAJA Performance Suite can take as
input command line arguments to change the default values for
the included benchmark kernels. We used the default values.
A complete list of arguments can be obtained by running
./rajaperf.exe --help.

C. Installation

Clone the RAJA Performance Suite:

git clone --branch 0.2.3 --recursive https://github.com/LLNL/RAJAPerf.git

Run CMake to configure software, substituting the
appropriate C++ compiler:

mkdir build && cd build
cmake -DCMAKE_CXX_COMPILER=<path to c++ compiler> ..

If running on a machine at Lawrence Livermore National
Laboratory or Argonne National Laboratory, you can use the
provided scripts to build with specific compilers:

./scripts/blueos_nvcc8.0_clang-coral.sh
cd build_blueos_nvcc8.0_clang-coral
make -j

D. Experiment workflow

To run the experiments, use the binary created by building
the software (described in the previous section):

./rajaperf.exe

This will generate four files: RAJAPerf-checksum.txt,
RAJAPerf-timing.csv, RAJAPerf-fom.csv, and
RAJAPerf-speedup.csv

E. Evaluation and expected result

The file RAJAPerf-checksum.txt should contain two
values for each kernel: the checksum value, and the checksum
diff. The diff should be 0, indicating that there is no difference
in solution between the baseline variant and any other.

F. Experiment customization

The experiment can be customized by varying the command
line argument sizefact, which is a multiplier on the
number of loop iterations for each kernel. For example:

./rajaperf.exe --sizefact 2.0

will run loops twice as long as the default for each kernel.

G. Notes

The performance of the RAJA Performance Suite is greatly
influenced by the compiler version and compiler flags used dur-
ing compilation. Using newer compilers will typically improve
performance. For more information about using RAJA and
the RAJA Performance Suite, please visit raja.readthedocs.io,
or email the RAJA development team at raja-dev@llnl.gov.


