CSCI 340: Computational Models

# Regular Languages

# Regular Languages

If we can define a language by RE, then it's a regular language

#### Theorem

If  $L_1$  and  $L_2$  are regular languages, then  $L_1 + L_2$  (union),  $L_1L_2$  (concatenation), and  $L_1^*$  (closure) are also regular languages.

### Proof by Regular Expression.

- 1 There exists REs  $\mathbf{r_1}$  and  $\mathbf{r_2}$  that define the regular languages  $L_1$  and  $L_2$
- 2 There exists an RE  $(\mathbf{r_1} + \mathbf{r_2})$  that defines the language  $L_1 + L_2$
- 3 There exists an RE  $\mathbf{r_1r_2}$  that defines the language  $L_1L_2$
- 4 There exists an RE  $\mathbf{r_1}^*$  that defines the language  $L_1^*$
- 6 All three of these sets of words are definable by RE

The set of regular languages is *closed* under union, concatenation, and Kleene closure.

# **Proof by Machines**

- ① Let us assume  $TG_1$  and  $TG_2$  exist that define languages  $L_1$  and  $L_2$ where each TG has a unique start and final state
- $2 L_1 + L_2$  can be described by:







 $\triangle$   $L_1^*$  can be described by:



# **Proof by Machines**

- ① Let us assume  $TG_1$  and  $TG_2$  exist that define languages  $L_1$  and  $L_2$  where each TG has a unique start and final state
- 2  $L_1 + L_2$  can be described by:



 $\mathbf{4} L_1^*$  can be described by:



3  $L_1L_2$  can be described by:



Small problem for  $L_1^*$  when the start has incoming edges. We must replicate the start state. We could convert to FA- $\lambda$  then to FA.

$$\Sigma = \{a \mid b\}$$
 $L_1 = \text{all words of 2+ letters that begin and end with the same letter}$ 
 $L_2 = \text{all words that contain the substring} aba$ 
 $\mathbf{r_1} = \mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}$ 
 $\mathbf{r_2} = (\mathbf{a} + \mathbf{b})^* \mathbf{aba}(\mathbf{a} + \mathbf{b})^*$ 
 $\mathbf{r_1} + \mathbf{r_2} = \mathbf{r_1 r_2} = \mathbf{r_1 r_2} = \mathbf{r_1}^* = \mathbf{r_1}^* = \mathbf{r_1}^*$ 

```
\Sigma = \{a \mid b\}
     L_1 = \text{all words of } 2+ \text{letters that begin and end with the same letter}
     L_2 = \text{all words that contain the substring} aba
     r_1 = a(a+b)^*a + b(a+b)^*b
     r_2 = (a + b)^* aba(a + b)^*
r_1 + r_2 = [a(a + b)^*a + b(a + b)^*b] + [(a + b)^*aba(a + b)^*]
   r_1 r_2 =
    r_1^* =
```

```
\Sigma = \{a \mid b\}
     L_1 = all words of 2+ letters that begin and end with the same letter
     L_2 = \text{all words that contain the substring} aba
     r_1 = a(a+b)^*a + b(a+b)^*b
     r_2 = (a + b)^* aba(a + b)^*
r_1 + r_2 = [a(a + b)^*a + b(a + b)^*b] + [(a + b)^*aba(a + b)^*]
   r_1r_2 = [a(a+b)^*a + b(a+b)^*b][(a+b)^*aba(a+b)^*]
    {\bf r_1}^* =
```

$$\begin{split} \Sigma &= \{a \mid b\} \\ L_1 &= \text{all words of 2+ letters that begin and end with the same letter} \\ L_2 &= \text{all words that contain the substring} aba \\ \mathbf{r_1} &= \mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b} \\ \mathbf{r_2} &= (\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{b} \mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{b} \\ \mathbf{r_1} &= \mathbf{r_2} &= [\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}] + [(\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{b} \mathbf{a}(\mathbf{a} + \mathbf{b})^*] \\ \mathbf{r_1} &= \mathbf{r_2} &= [\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}] \\ \mathbf{r_1}^* &= [\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}]^* \end{split}$$

Show  $TG_1 + TG_2$ ,  $TG_1TG_2$ , and  $TG_1^*$ 

$$\begin{split} \Sigma &= \{a \mid b\} \\ L_1 &= \text{all words of 2+ letters that begin and end with the same letter} \\ L_2 &= \text{all words that contain the substring} aba \\ \mathbf{r_1} &= \mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b} \\ \mathbf{r_2} &= (\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{b} \mathbf{a} (\mathbf{a} + \mathbf{b})^* \mathbf{b} \\ \mathbf{r_1} &+ \mathbf{r_2} &= [\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}] + [(\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{b} \mathbf{a} (\mathbf{a} + \mathbf{b})^*] \\ \mathbf{r_1} &+ \mathbf{r_2} &= [\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}] + [(\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{b} \mathbf{a} (\mathbf{a} + \mathbf{b})^*] \\ \mathbf{r_1} &+ \mathbf{r_2} &= [\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}] + [(\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{b} \mathbf{a} (\mathbf{a} + \mathbf{b})^*] \\ \mathbf{r_1} &+ \mathbf{r_3} &= [\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{a} + \mathbf{b}(\mathbf{a} + \mathbf{b})^* \mathbf{b}]^* \end{split}$$
Show the TGs that accept  $L_1$  and  $L_2$ 

# **Complements and Intersections**

#### Definition

If L is a language over alphabet  $\Sigma$ , we define its **complement**, L' to be the language of all strings of letters from  $\Sigma$  that are *not* words in L.

### Example

If L is the language over the alphabet  $\Sigma = \{a \mid b\}$  of all words that have a double a in them, then L' is the language of all words that do not have a double a.

We must specify the alphabet  $\Sigma$  or else the complement of L might contain cat, dog, . . . (because they are definitely not strings in L).

$$(L')' = L$$

for obvious reasons (theorem in set theory)

# Complements and Regular Languages

#### Theorem

If L is a regular language, then L' is also a regular language. In other words, the set of regular languages is closed under complementation.

#### Proof.

- If *L* is a regular language, we know from Kleene's theorem that there is some FA that accepts *L*.
- The states of FA are each either final or non-final
- Let us reverse the final status of each state (e.g. final → non-final, non-final → final)
- This new machine accepts all input strings the original FA rejected (L'). Likewise, the new machine rejects all input strings the original FA accepted (L).
- This new FA can be converted to an RE via Kleene's theorem

# Complements of Regular Languages Example



# Complements of Regular Languages Example



## Language Intersection

#### Theorem

If  $L_1$  and  $L_2$  are regular languages, than  $L_1 \cap L_2$  is also a regular language. e.g. the set of regular languages is closed under intersection.









# Language Intersection



From the above, it is obvious how  $(L'_1 + L'_2)' = L_1 \cap L_2$ 

# Algorithm for finding RE accepting $L_1 + L_2$

### Algorithm

- **1** Define  $\mathbf{r_1}$  and  $\mathbf{r_2}$  which represent  $L_1$  and  $L_2$
- 2 Convert  $\mathbf{r_1}$  and  $\mathbf{r_2}$  to  $FA_1$  and  $FA_2$
- 3 Invert the states of  $FA_1$  and  $FA_2$  resulting in  $FA_1'$  and  $FA_2'$
- Merge  $FA'_1$  and  $FA'_2$  into TG', then convert TG' into  $FA'_3$
- **⑤** Invert the states of  $FA'_3$ , resulting in  $FA_3$  (which accepts  $L_1 \cap L_2$ )

#### Proof.

# Algorithm for finding RE accepting $L_1 + L_2$

### Algorithm

- ① Define  $\mathbf{r_1}$  and  $\mathbf{r_2}$  which represent  $L_1$  and  $L_2$
- ② Convert  $\mathbf{r_1}$  and  $\mathbf{r_2}$  to  $FA_1$  and  $FA_2$
- 3 Invert the states of  $FA_1$  and  $FA_2$  resulting in  $FA_1'$  and  $FA_2'$
- Merge  $FA'_1$  and  $FA'_2$  into TG', then convert TG' into  $FA'_3$
- **⑤** Invert the states of  $FA'_3$ , resulting in  $FA_3$  (which accepts  $L_1 \cap L_2$ )

#### Proof.

- For a regular language, there exists a RE
- ② Given an RE, there exists an FA (Kleene's theorem)
- We can complement an FA by swapping its states
- 4 We can describe  $L'_1 + L'_2$  by merging two TGs
- We can convert a TG to an RE

 $L_1 = all strings with a double a$ 

 $L_2 =$ all strings with an even number of a's

 $L_1 = \text{all strings with a double} a$  $L_2 = \text{all strings with an even number of } a$ 's

We can define  $L_1$  and  $L_2$  by the following REs:

$$\begin{aligned} \textbf{r_1} &= (\textbf{a} + \textbf{b})^*\textbf{a}\textbf{a}(\textbf{a} + \textbf{b})^* \\ \textbf{r_2} &= \textbf{b}^*(\textbf{a}\textbf{b}^*\textbf{a}\textbf{b}^*)^* \end{aligned}$$

 $L_1 =$ all strings with a doublea

 $L_2 =$ all strings with an even number of a's

We can define  $L_1$  and  $L_2$  by the following REs:

$$\begin{aligned} \textbf{r_1} &= (\textbf{a} + \textbf{b})^*\textbf{a}\textbf{a}(\textbf{a} + \textbf{b})^* \\ \textbf{r_2} &= \textbf{b}^*(\textbf{a}\textbf{b}^*\textbf{a}\textbf{b}^*)^* \end{aligned}$$

Or the following FAs:



### Swapping the states:



### Merging (Creating the TG):



### After converting the TG to FA:



After swapping all of the states:



And converting the FA to RE with the bypass algorithm:

$$(\mathbf{a} + \mathbf{a}\mathbf{b}\mathbf{b}^*\mathbf{a}\mathbf{b})^*\mathbf{a}(\mathbf{a} + \mathbf{b}\mathbf{b}^*\mathbf{a}\mathbf{a}\mathbf{b}^*\mathbf{a})(\mathbf{a} + \mathbf{a}\mathbf{b}^*\mathbf{a})^*$$

## A Better Way...

- Remember creating a machine that accepts FA<sub>1</sub> + FA<sub>2</sub> where FA<sub>1</sub>
  has x-states, FA<sub>2</sub> has y-states, and our new machine has z-states
- We identify all final z-states by x-or-y states being accepted upon the construction of our new machine
- Let's change the designation for FA<sub>1</sub> ∩ FA<sub>2</sub> to:
   All final z-states by x-and-y states being accepted upon the construction of our new machine
- Now the new FA accepts only strings that reach simultaneously on both machines

**TL;DR** – change the rules of determining a final state of two FAs to be the intersection  $(\cap)$  rather than union (+)

# One Final Example

### Our two languages will be:

$$L_1 = \text{all words that begin with an} a$$
  
 $L_2 = \text{all words than end with an} a$   
 $\mathbf{r_1} = \mathbf{a}(\mathbf{a} + \mathbf{b})^*$   
 $\mathbf{r_2} = (\mathbf{a} + \mathbf{b})^* \mathbf{a}$ 

An obvious solution is:

$$a(a+b)^*a+a$$

But now we need to prove it...

#### Homework 6a

For each of the following pars of regular languages, find a RE and FA that define  $L_1 \cap L_2$ 

- 1.  $(a + b)^*a$   $b(a + b)^*$
- 2. Even-length strings  $(\mathbf{b} + \mathbf{ab})^*(\mathbf{a} + \lambda)$
- 3. Odd-length strings  $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$
- 4. Even-length strings Strings with an even number of a's