CSCI 340: Computational Models
Regular Languages

Regular Languages

If we can define a language by RE, then it's a regular language

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1}+L_{2}$ (union), $L_{1} L_{2}$ (concatenation), and $L_{1}{ }^{*}$ (closure) are also regular languages.

Proof by Regular Expression.

(1) There exists REs $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ that define the regular languages L_{1} and L_{2}
(2) There exists an RE $\left(\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}}\right)$ that defines the language $L_{1}+L_{2}$
(3) There exists an RE $\mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{2}}$ that defines the language $L_{1} L_{2}$
(4) There exists an RE $\mathbf{r}_{\mathbf{1}}{ }^{*}$ that defines the language $L_{1}{ }^{*}$
(5) All three of these sets of words are definable by RE

The set of regular languages is closed under union, concatenation, and Kleene closure.

Proof by Machines

(1) Let us assume $T G_{1}$ and $T G_{2}$ exist that define languages L_{1} and L_{2} where each TG has a unique start and final state

2 $L_{1}+L_{2}$ can be described by:
(3) $L_{1} L_{2}$ can be described by:

(4) $L_{1}{ }^{*}$ can be described by:

Proof by Machines

(1) Let us assume $T G_{1}$ and $T G_{2}$ exist that define languages L_{1} and L_{2} where each TG has a unique start and final state

2 $L_{1}+L_{2}$ can be described by:

(4) $L_{1}{ }^{*}$ can be described by:

(3) $L_{1} L_{2}$ can be described by:

Small problem for $L_{1}{ }^{*}$ when the start has incoming edges. We must replicate the start state. We could convert to FA- λ then to FA.

Example

$$
\Sigma=\left\{\begin{array}{ll}
a & b
\end{array}\right\}
$$

$L_{1}=$ all words of $2+$ letters that begin and end with the same letter
$L_{2}=$ all words that contain the substringaba

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}=\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b} \\
& \mathbf{r}_{\mathbf{2}}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}} & = \\
\mathbf{r}_{1} \mathbf{r}_{\mathbf{2}} & = \\
\mathbf{r}_{\mathbf{1}}^{*} & =
\end{aligned}
$$

Example

$$
\Sigma=\left\{\begin{array}{ll}
a & b
\end{array}\right\}
$$

$L_{1}=$ all words of $2+$ letters that begin and end with the same letter
$L_{2}=$ all words that contain the substringaba

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}=\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b} \\
& \mathbf{r}_{\mathbf{2}}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]+\left[(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}\right] \\
\mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{2}} & = \\
\mathbf{r}_{\mathbf{1}}{ }^{*} & =
\end{aligned}
$$

Example

$$
\Sigma=\left\{\begin{array}{ll}
a & b
\end{array}\right\}
$$

$L_{1}=$ all words of $2+$ letters that begin and end with the same letter
$L_{2}=$ all words that contain the substringaba

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}=\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b} \\
& \mathbf{r}_{\mathbf{2}}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]+\left[(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}\right] \\
\mathbf{r}_{1} \mathbf{r}_{\mathbf{2}} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]\left[(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}\right] \\
\mathbf{r}_{\mathbf{1}}{ }^{*} & =
\end{aligned}
$$

Example

$$
\Sigma=\left\{\begin{array}{ll}
a & b
\end{array}\right\}
$$

$L_{1}=$ all words of $2+$ letters that begin and end with the same letter
$L_{2}=$ all words that contain the substringaba

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}=\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b} \\
& \mathbf{r}_{\mathbf{2}}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]+\left[(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}\right] \\
\mathbf{r}_{1} \mathbf{r}_{\mathbf{2}} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]\left[(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}\right] \\
\mathbf{r}_{\mathbf{1}}{ }^{*} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]^{*}
\end{aligned}
$$

Example

$$
\Sigma=\left\{\begin{array}{ll}
a & b
\end{array}\right\}
$$

$L_{1}=$ all words of $2+$ letters that begin and end with the same letter
$L_{2}=$ all words that contain the substringaba

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}=\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b} \\
& \mathbf{r}_{\mathbf{2}}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]+\left[(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}\right] \\
\mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{2}} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]\left[(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b a}(\mathbf{a}+\mathbf{b})^{*}\right] \\
\mathbf{r}_{\mathbf{1}}{ }^{*} & =\left[\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}\right]^{*}
\end{aligned}
$$

Show the TGs that accept L_{1} and L_{2}
Show $T G_{1}+T G_{2}, T G_{1} T G_{2}$, and $T G_{1}{ }^{*}$

Complements and Intersections

Definition

If L is a language over alphabet Σ, we define its complement, L^{\prime} to be the language of all strings of letters from Σ that are not words in L.

Example

If L is the language over the alphabet $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$ of all words that have a double a in them, then L^{\prime} is the language of all words that do not have a double a.

We must specify the alphabet Σ or else the complement of L might contain cat, dog, . . . (because they are definitely not strings in L).

$$
\left(L^{\prime}\right)^{\prime}=L
$$

for obvious reasons (theorem in set theory)

Complements and Regular Languages

Theorem

If L is a regular language, then L^{\prime} is also a regular language. In other words, the set of regular languages is closed under complementation.

Proof.

- If L is a regular language, we know from Kleene's theorem that there is some FA that accepts L.
- The states of FA are each either final or non-final
- Let us reverse the final status of each state (e.g. final \rightarrow non-final, non-final \rightarrow final)
- This new machine accepts all input strings the original FA rejected (L^{\prime}). Likewise, the new machine rejects all input strings the original FA accepted (L).
- This new FA can be converted to an RE via Kleene's theorem \square

Complements of Regular Languages Example

Complements of Regular Languages Example

Language Intersection

Theorem

If L_{1} and L_{2} are regular languages, than $L_{1} \cap L_{2}$ is also a regular language. e.g. the set of regular languages is closed under intersection.

Language Intersection

From the above, it is obvious how $\left(L_{1}^{\prime}+L_{2}^{\prime}\right)^{\prime}=L_{1} \cap L_{2}$

Algorithm for finding RE accepting $L_{1}+L_{2}$

Algorithm

(1) Define $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ which represent L_{1} and L_{2}
(2) Convert $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ to $F A_{1}$ and $F A_{2}$
(3) Invert the states of $F A_{1}$ and $F A_{2}$ resulting in $F A_{1}^{\prime}$ and $F A_{2}^{\prime}$
(4) Merge $F A_{1}^{\prime}$ and $F A_{2}^{\prime}$ into $T G^{\prime}$, then convert $T G^{\prime}$ into $F A_{3}^{\prime}$
(5) Invert the states of $F A_{3}^{\prime}$, resulting in $F A_{3}$ (which accepts $L_{1} \cap L_{2}$)

Proof.

Algorithm for finding RE accepting $L_{1}+L_{2}$

Algorithm

(1) Define $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ which represent L_{1} and L_{2}
(2) Convert $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ to $F A_{1}$ and $F A_{2}$
(3) Invert the states of $F A_{1}$ and $F A_{2}$ resulting in $F A_{1}^{\prime}$ and $F A_{2}^{\prime}$
(4) Merge $F A_{1}^{\prime}$ and $F A_{2}^{\prime}$ into $T G^{\prime}$, then convert $T G^{\prime}$ into $F A_{3}^{\prime}$
(5) Invert the states of $F A_{3}^{\prime}$, resulting in $F A_{3}$ (which accepts $L_{1} \cap L_{2}$)

Proof.

(1) For a regular language, there exists a RE
2. Given an RE, there exists an FA (Kleene's theorem)

3 We can complement an FA by swapping its states
(4) We can describe $L_{1}^{\prime}+L_{2}^{\prime}$ by merging two TGs
(5) We can convert a TG to an RE

Example

$L_{1}=$ all strings with a doublea
$L_{2}=$ all strings with an even number of a 's

Example

$$
\begin{aligned}
& L_{1}=\text { all strings with a doublea } \\
& L_{2}=\text { all strings with an even number of } a \text { 's }
\end{aligned}
$$

We can define L_{1} and L_{2} by the following REs:

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \\
& \mathbf{r}_{\mathbf{2}}=\mathbf{b}^{*}\left(\mathbf{a} \mathbf{b}^{*} \mathbf{a b}^{*}\right)^{*}
\end{aligned}
$$

Example

$$
\begin{aligned}
& L_{1}=\text { all strings with a doublea } \\
& L_{2}=\text { all strings with an even number of } a \text { 's }
\end{aligned}
$$

We can define L_{1} and L_{2} by the following REs:

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \\
& \mathbf{r}_{\mathbf{2}}=\mathbf{b}^{*}\left(\mathbf{a b}^{*} \mathbf{a} \mathbf{b}^{*}\right)^{*}
\end{aligned}
$$

Or the following FAs:

Example

Swapping the states:

Merging (Creating the TG):

Example

After converting the TG to FA:

Example

After swapping all of the states:

And converting the FA to RE with the bypass algorithm:

$$
\left(\mathbf{a}+\mathbf{a} \mathbf{b} \mathbf{b}^{*} \mathbf{a b}\right)^{*} \mathbf{a}\left(\mathbf{a}+\mathbf{b} \mathbf{b}^{*} \mathbf{a} \mathbf{a} \mathbf{b}^{*} \mathbf{a}\right)\left(\mathbf{a}+\mathbf{a} \mathbf{b}^{*} \mathbf{a}\right)^{*}
$$

A Better Way...

- Remember creating a machine that accepts $F A_{1}+F A_{2}$ where $F A_{1}$ has x-states, $F A_{2}$ has y-states, and our new machine has z-states
- We identify all final z-states by x-or- y states being accepted upon the construction of our new machine
- Let's change the designation for $F A_{1} \cap F A_{2}$ to:

All final z-states by x-and- y states being accepted upon the construction of our new machine

- Now the new FA accepts only strings that reach simultaneously on both machines

TL;DR - change the rules of determining a final state of two FAs to be the intersection (\cap) rather than union (+)

One Final Example

Our two languages will be:

$$
\begin{aligned}
L_{1} & =\text { all words that begin with ana } \\
L_{2} & =\text { all words than end with ana } \\
\mathbf{r}_{\mathbf{1}} & =\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \\
\mathbf{r}_{\mathbf{2}} & =(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}
\end{aligned}
$$

An obvious solution is:

$$
\mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}+\mathbf{a}
$$

But now we need to prove it...

Homework 6a

For each of the following pars of regular languages, find a RE and FA that define $L_{1} \cap L_{2}$

1. $(\mathbf{a}+\mathbf{b})^{*} \mathbf{a} \quad \mathbf{b}(\mathbf{a}+\mathbf{b})^{*}$
2. Even-length strings $(\mathbf{b}+\mathbf{a b})^{*}(\mathbf{a}+\lambda)$
3. Odd-length strings $\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}$
4. Even-length strings Strings with an even number of a 's
