CSCI 340: Computational Models

Background

Chapter 1 Millersville University Department of Computer Science

The Theory of Computers

- Form mathematical models that will describe
 - parts of computers
 - types of computers
 - and similar machines
 - ... with varying degrees of accuracy
- Mathematical doesn't necessarily mean geometry or calculus
- Make claims and support them with logic and proofs
- The material in this class is timeless it carries through general theory of computation. Agnostic to:
 - computer architecture
 - programming language
 - operating system

The Building Blocks of Theory of Computation

- Mathematical Logic
- Set Theory
- Mathematical Proofs
- Universal Algorithm Machine
 - Alonzo Church
 - Stephen Kleene
 - Emil Post
 - Andre Markov
 - John Von Neumann
 - Alan Turing

Why is Theory of Computation Important?

- Because Dr. Killian says it is
- Because MU CS says it is
- Because computer science is built on mathematics?

Why is Theory of Computation Important?

- We want to prove proofs in mathematics
- We want to use mathematics to describe how things work
 - Theory of Computation: modeling **algorithms**
 - "Neural Networks": modeling thought
- We want to understand how computers work from a rigorous logical view rather than from details (See CSCI 362, 370, 380)

Computer Theory

Three Primary Components:

- Theory of Automata
- Theory of Formal Languages
- Theory of Turing Machines

General Overview of the Course:

- Analyzing different types of theoretical machines
- Describing these theoretical machines as mathematical models
- Determine their strengths and weaknesses
- Discover the concept of *computability*

Grading

- 15% Test 1
- 15% Test 2
- 15% Test 3
- 15% Test 4
- 15% Homework Assignments
- 25% Laboratory Assignments

\geq 93	\geq 90	\geq 87	\geq 83	\geq 80	\geq 77	\geq 73	\geq 70	\geq 67	\geq 63	\geq 60	< 60
A	A-	B+	В	B-	C+	с	C-	D+	D	D-	F

You must attempt all exams, homeworks, and labs to pass the course

Homework and Laboratory Assignments

• Homework (15% of grade)

- Handed out each week
- Due the immediately following week
- Submitted through D2L
- Approximately 12 throughout the semester

Laboratory Assignments (25% of grade)

- Five throughout the semester (approximately 5% each)
- Computer-based assignments with JFLAP or other programs
- Autograded using https://autolab.millersville.edu