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Abstract. Portability abstraction layers such as RAJA enable users
to quickly change how a loop nest is executed with minimal modifi-
cations to high-level source code. Directive-based programming mod-
els such as OpenMP and OpenACC provide easy-to-use annotations on
for-loops and regions which change the execution pattern of user code.
Directive-based language backends for RAJA have previously been lim-
ited to few options due to multiplicative clauses creating version ex-
plosion. In this work, we introduce an updated implementation of two
directive-based backends which helps mitigate the aforementioned ver-
sion explosion problem by leveraging the C++ type system and tem-
plate meta-programming concepts. We implement partial OpenMP 4.5
and OpenACC backends for the RAJA portability layer which can ap-
ply loop transformations and specify how loops should be executed. We
evaluate our approach by analyzing compilation and runtime overhead
for both backends using PGI 17.7 and IBM clang (OpenMP 4.5) on a
collection of computation kernels.

Keywords: directive-based programming model, performance portabil-
ity, abstraction layer, code generation

1 Introduction

Directives provide a simple mechanism for annotating source code which provides
additional hints to a compiler. OpenMP [12] was one of the first standardized
models to leverage directive-based program transformations. Such models enable
a user to annotate a region or for-loop which allows the compiler to deduce
additional information about the program. Compilers with OpenMP support
are able to emit parallelized code from source code which had no original notion
of being parallelizable.

Due to the increasing demand of heterogeneous computing, OpenACC [11]
emerged as a directive-based programming model targeting accelerators includ-
ing GPUs. OpenACC tends to prefer a more descriptive annotation model where
a user may not need to explicitly state how a loop should be executed. Instead,
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the user indicates to the compiler that a loop can be parallelized. On the other
hand, OpenMP leans toward a more prescriptive annotation model where a user
must clearly state how a loop should be executed. The OpenMP standards com-
mittee released OpenMP 4.0 and 4.5 which enabled and improved upon [13]
heterogeneous targets. Both programming models are interesting in the scope
of this research due to (1) their directive-based approach of parallelization, (2)
cross architecture support, and (3) targeting heterogeneous systems.

Performance Portability Layers make a limited set of assumptions about pro-
grams and allow a user to represent a program as an embedded domain specific
language. Although this language has reduced usage compared to a general-
purpose programming model, the portability layer is able to make additional
assumptions about a user’s code and apply high- and low-level source code trans-
formations. This is incredibly useful when a user may wish to explore an unknown
optimizations search space or compare/contrast multiple programming models.

There are many portability layers in active and maintained development.
Thrust [1] is a C++ library which enables users to easily target GPUs and
multi-core CPUs without needing to know CUDA [10], NVIDIA’s proprietary
programming language for targeting GPUs. Agency [9] is a relatively new porta-
bility layer which leverages C++ templates to drive parallel programming. The
primary difference between Agency and Thrust lies with the level of abstrac-
tion – Agency provides much more fine-grained control over how and where to
execute.

Kokkos [2] is another C++ library with an interest in unifying data paral-
lelism and memory access patterns. Kokkos is capable of restructuring data at
compile time with their generic View concept which helps improve performance
across different target architectures, such as CPUs, GPUs, and many-core ar-
chitectures. Kokkos also provides many different execution policies to end users,
giving them enough flexibility to experiment with competing programming mod-
els (e.g. OpenMP 4.5 and CUDA).

More recently, the C++ Standards Committee (WG21) approved parallel
Standard Template Library functions as part of the Parallelism TS [5]. They
augmented many of the algorithms found under algorithm and numeric to in-
clude execution policy types. The standard defines three types: seq (sequential,
ordered), par seq (parallelized but in sequenced order), and par useq (paral-
lelized, unsequenced ordering) [6]. Vendors are also able to provide their own
execution policies. Intel [4], SYCL [8], and HPX [7] were the first entities to
release feature-complete versions of the Parallelism TS publicly.

The Khronos group has also come out with SYCL, a C++ single-source het-
erogeneous programming model for OpenCL [8]. SYCL provides a cross-platform
API which enables code to be written in C++ and target any OpenCL device.

RAJA [3] is another C++ library which provides many different types of ex-
ecution policies. One advantage to RAJA over other portability layers is the sup-
port for a variety of backends, ranging from sequential, SIMD, and OpenMP on
CPU architectures to CUDA, OpenMP 4.5, and (with this research) OpenACC
on GPU architectures. In this research we extend our OpenMP backend and
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propose an initial OpenACC backend implementation. We outline the concepts
and key structures of RAJA in Section 2. Then we introduce our type framework
for creating execution policies in Section 3. We then outline the specializations
required for OpenMP 4.5 and OpenACC in Sections 4 and 5. Finally, we eval-
uate the overhead in terms of (1) compilation time and (2) execution time. We
leverage a collection of kernels, both hand written and automatically generated
RAJA versions, to evaluate the overhead in using a portability abstraction layer
outlined in Section 6.

2 RAJA

RAJA can be reduced to three relevant concepts for the scope of this research.
These three concepts define the expected interfaces, types, and pre- and post-
conditions when library writers and users leverage RAJA to generate target code
from a portable interface.

Execution Policy First, an execution policy in RAJA tells the compiler which
code path to follow and expand when expanding on loop and loop nests. RAJA
provides many different backend targets, including sequential, OpenMP, SIMD,
CUDA, and OpenACC implementations. Depending on the type of execution
policy, the code which is conditionally enabled may change. Execution policies
ultimately drive the required code transformations and generation necessary to
provide a user with the expected behavior of specifying a given policy.

Callable Second, a callable is a lambda function or a function which is invocable
with a specified number of arguments. The Callable is also known as the loop
body of a loop nest within the scope of RAJA. The callable must not be mutable.
Depending on the target backend, the Callable may need additional attributes
specified, such as __host__ __device__ attribute indicators for CUDA.

RandomAccessContainer Third, a random-access container defines an iteration
space for a given range of elements. The functional requirements of a Rando-
mAccessContainer are:

– must have begin() and end() which each return RandomAccessIterators to
the underlying type

– must have size() to indicate the size of the container
– the underlying type (decltype(*container.begin())) must be convertible

to a specified Callable lambda function.

2.1 Basic Execution Policies

The most basic executor in RAJA is a simple for-loop executor in the current
thread. No code transformations or directives are emitted in this base case.
Instead, RAJA will just create a for-loop which iterates over the RandomAccess-
Container specified in the forall call and invoke the Callable function with the
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underlying value of each element contained within the RandomAccessContainer.
More complex executors may augment or change the code path to include the
emission of directives or other code. Section 3.3 outlines the specialization of
forall for arbitrary execution policies.

2.2 RAJA::NestedPolicy and loop transformations

RAJA provides a powerful loop transformation construct, forallN. forallN

is similar to forall, but enables the user to specify loop transformations for
nested loops such as permutation and tiling. Any combinations of permutations
and tiles can be applied. The NestedPolicy type is composed with an ExecList

followed by any number of Tile clauses. ExecList describes the execution policy
to apply to each loop nest. Tile clauses can specify a TileList to apply tiles of
specified sizes to each loop. Permutations can also be specified with a Permute

clause. Multiple Tile clauses can be applied to a single loop nest, making it
feasible to optimize for outer- and inner-cache data access patterns. An example
NestedPolicy is shown in Listing 1.

using Policy = NestedPolicy<

ExecList<

omp_collapse_nowait_exec,

simd_exec,

omp_collapse_nowait_exec>,

OMP_Parallel<

Tile<TileList<

tile_none,

tile_fixed<8>,

tile_fixed<32>>,

Permute<idx_seq<1,2,0>>>>>;

Listing 1: Sample NestedPolicy for use within RAJA::forallN. Note that mul-
tiple tiling policies may be specified in addition to outer “wrap” policies which
can create regions of code. Loops may also be permuted to an arbitrary ordering,
and, provided backend support, loops may also be collapsed

RAJA provides specializations for omp for nowait exec policies that are
next to one another. After any permutation of loops is applied, RAJA will look
for any number of adjacent omp collapse nowait exec policies. If two or more
collapse policies are directly adjacent, a single #pragma omp for collapse(N)

directive is emitted above the N next loops.

3 Embedding Directives in the C++ Type System

In general, most execution-based directives are applied to for-loops. RAJA pro-
vides the forall and forallN loop constructs to specify an execution policy on
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a single loop or loop nest. The most challenging component of this research is
embedding the required directive information in a C++ type to apply template
specialization with careful consideration of SFINAE4. To tackle this embedding
problem, we make the following translations:

– All supported directives have a functional mapping to a single type; not all
clauses and options are supported.

– OpenACC/OpenMP parallel and OpenMP 4.5 target enclose regions, or
structured code blocks

– OpenACC loop, OpenMP 4.5 teams distribute, and OpenMP for con-
structs are variadic – zero or more clauses may be added to one of these
constructs.

The construction of a type system for a directive-based programming lan-
guage can be described with the following steps:

1. Define all valid constructs, directives, and clauses as policy tags

2. Construct explicit types for each construct, directive, and clause

– When defining a construct that encloses a region, an inner type must
be defined. The appropriate region code shall be emitted and the inner
policy will then be invoked.

– When defining a construct or directive which may have clauses optionally
specified, the new type must accept a variadic number of template argu-
ment types and inherit from all specified variadic template arguments.

– Clauses with value-based options, e.g. num gangs, must be defined with
a uniquely-identifiable static constexpr int member variable.

3. Implement all specializations for the backend planned for support

Below, we highlight a trivial case of supporting OpenMP 3.x parallel for

with an optionally specified schedule clause.

3.1 Defining Policy Tags for a Backend

Tags are defined within a nested tags namespace for the supported backend. For
the case of an OpenMP policy, we will make use of the omp namespace. Listing 2
shows the definitions of various tags used to build OpenMP policies. There are
two primary types of tags. The first – region-based tags – describe tags which
are used to define a region containing another policy. The second type of tag,
construct- and clause-based tags, describe all other valid policy tags present for
a given backend (e.g. OpenMP). The aggregation of these tags within a single
C++ type is how we specialize forall for a backend implementation.

4 Substitution Failure Is Not An Error – the C++ standard states that substitution
failure shall not result in a compiler error unless no valid substitutions are found
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namespace omp::tags {

// region-based tags

struct Parallel {};

struct BarrierAfter {};

// ... BarrierBefore, etc.

// construct- and clause-based tags

struct For {};

struct Static {};

// ... Guided, Dynamic

}

Listing 2: Defining tag types for the OpenMP 3.x parallel for clause

3.2 Constructing Explicit Execution Policy Types

Once the policy tags are defined, we construct our explicit types for directives
and clauses. Each of these explicit types defines a component of a policy. A
policy defines how the code should be analyzed by a generator or specialization.
Within the scope of RAJA, a policy must define (1) a type (e.g. sequential,
OpenMP) and (2) a platform (e.g. undefined, cpu, gpu). The type is useful for
determining whether a constructed policy is valid. The platform information
is used by the optional data integration layer to automatically perform data
transfer. In Listing 3 we show the definitions of a PolicyBase type used to
construct subsequent execution policies.

enum class Policy { seq, simd, cuda, openmp, target_openmp, openacc };

enum class Platform { undefined, cpu, gpu };

template <Policy Pol, Platform P, typename... Args>

struct PolicyBaseT : public Args... {

static constexpr Policy policy = Pol;

static constexpr Platform platform = P;

};

// specific policy alias type for all OpenMP policies

namespace omp {

template <typename... Args>

using policy = PolicyBaseT<Policy::openmp, Platform::undefined, Args...>;

}

Listing 3: Base policy types and platforms used to construct additional policies
in RAJA. Note that the specialized OpenMP type alias has no defined platform
to permit reuse between OpenMP 3.x and OpenMP 4.5 target offload execution
policies.
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Region-like directives (e.g. omp parallel in OpenMP 3.x) define a code block
to enclose. A generic region policy must represent a code region within the
type system. We accomplish this by defining an inner policy type. This inner
policy type indicates how the code within the region should execute with another
execution policy. Listing 4 shows the construction of a Parallel policy within the
omp namespace. Once the parallel execution policy is defined, it can be used in
conjunction with other policies to drive source code transformations at compile
time.

namespace omp {

template <typename Inner>

struct Parallel : policy<tags::Parallel> {

using inner = Inner;

};

}

Listing 4: Construction of an OpenMP 3.x parallel region policy

Other directives, such as omp for define how an immediately-following for-
loop should be distributed within the current parallel region. Additional clauses
can change the execution behavior of the for-loop, specifically schedule and
nowait. Listing 5 shows how a for-loop directive is constructed. Specifying
additional options for an OpenMP for execution policy is not required, but
a policy clause still must indicate any required information through the type
system. The specialization of the schedule(static,N) clause is shown in Fig-
ure 6. In addition to a template argument specifying the static chunk size, a
static constexpr int member variable with a uniquely identifiable name is
defined as an accessor for the template argument value. Additional clauses, in-
cluding guided and dynamic scheduling clauses, are omitted for brevity.

template <typename... Options>

struct For : policy<tags::For>, Options... {};

Listing 5: Construction of an OpenMP for policy with template arguments. Note
that the Options are variadically inherited to encode the underlying policy a
“parent” to the current policy.

3.3 Implement forall Specializations

Once all directives and clauses are defined, we can implement RAJA::forall spe-
cializations with aggregate policies. An aggregate policy is a fully-defined policy
which should be made available to end users. RAJA provides a few aggregate
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template <unsigned int N>

struct Static : policy<tags::Static> {

static constexpr unsigned int static_chunk_size = N;

};

Listing 6: Definition of an OpenMP static schedule clause for an OpenMP for
directive. Since the static schedule has no other options besides the chunk size,
there is no additional inheritance besides the policy definition.

using omp_for_exec = omp::BarrierAfter<omp::For<>>;

template <unsigned int N>

using omp_static_exec = omp::BarrierAfter<omp::For<omp::Static<N>>>;

using omp_for_nowait_exec = omp::For<>;

template <unsigned int N>

using omp_static_nowait_exec = omp::For<omp::Static<N>>;

template <typename Inner>

using omp_parallel_exec = omp::Parallel<Inner>;

using omp_parallel_for_exec = omp_parallel_exec<omp_for_exec>;

template <unsigned int N>

using omp_parallel_static_exec = omp_parallel_exec<omp_static_exec<N>>;

Listing 7: Aggregate policy definitions for the RAJA OpenMP 3.x backend. Note
that the default for execution policy is nowait and all aggregate policies are
type aliases; no new types are introduced.

policies for OpenMP 3.x, e.g. omp parallel for, omp parallel for nowait,
OMP Parallel. An aggregate policy can be viewed as a type alias to a nesting
of policy directives and clauses. Figure 7 shows a subset of aggregate policies
implemented for the RAJA OpenMP 3.x backend.

We implement corresponding RAJA::forall specializations for each defined
aggregate policy. Given the type hierarchy of an aggregate policy, we can deter-
mine all enclosed directives and clauses in the following manner:

1. α is the set of all possible directives/clauses valid for the current backend.
2. ε is the set of directives/clauses required for a forall specialization.
3. β is the set of directives/clauses present in a given execution policy.
4. Ensure β ∪ ε = β.
5. Ensure β ∪ (α \ ε) = ∅.
6. Use SFINAE-safe conditional visibility of the forall specialization by re-

stricting visibility of the specialization, ε, to policies equivalent to β.
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omp::For<omp::Static<N>>

omp::Static<N>

omp::Parallel<omp::For<omp::Static<N>>>

tags::Parallel

tags::For

tags::Static static_chunk_size

Fig. 1. The full type hierarchy of an instantiated omp parallel for

schedule(static, N) policy. Red indicates a static constexpr int member
variable, green indicates a tag type, and yellow represents a policy type.

tags::Parallel tags::For tags::Static static_chunk_size

Fig. 2. The flattened type hierarchy of an instantiated omp parallel for

schedule(static, N) policy. The specialization is easy to deduce from the specified
tags (shown in green). Any attributes needed by the specialization can be accessed
with field names (shown in red).

We show an example type hierarchy of an OpenMP Parallel for directive
with a fixed, static schedule in Figure 1. Furthermore, when we collapse the
type hierarchy into a flat view, depicted in Figure 2, we can easily check the
constraints to determine the most specialized valid execution.

This constraint satisfaction can easily be implemented in C++ by counting
the occurrences of β in both α and ε and ensuring they are the same. The
exact<T...> metafunction provides an alias to std::enable_if<T...>::type

if and only if the constraint is met. An additional layer of dispatch to the generic
forall interface exists to generalize to a given backend. Listing 8 shows a subset
of forall specialization for the OpenMP 3.x backend as well as the forall

dispatch to an OpenMP policy type.

4 Case Study: OpenMP 4.5

In addition to supporting parallel for and other clauses from the OpenMP
3.x standard, we extend RAJA to support a number of OpenMP 4.5 directives
and clauses. From a design perspective, we chose to extend the OpenMP imple-
mentation as follows:

1. Extend the tags to include Target, Teams, and Distribute

2. Define aggregate policies for TargetTeamsDistribute, TargetTeamsDistributeParallelFor,
and TargetTeamsDistributeParallelStatic

3. Define a dispatch overload for forall with all OpenMP 4.5 policies
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4. Define built-in policies for some OpenMP 4.5 policies: OMP Target (for forallN),
omp target teams distribute parallel for, and a few others.

Listing 9 highlights the augmentation of OpenMP 3.x tags to OpenMP 4.5.
We first include all of the tags under the omp::tags namespace, then we in-
troduce the additional tags required by OpenMP 4.5. Once all of the tags are
defined, we need to construct the tag list. The tag list is used to determine the
most specialized and valid version of an execution policy.

Once all tags are defined, we can create the aggregate policies to allow for
proper OpenMP 4.5 team distribution on GPUs. Listing 10 shows the creation
of the aggregate policies. Each aggregate policy requires the number of teams to
be specified at a template parameter. Additionally, there is one aggregate policy
which also expects a static chunk size to be specified as an additional template
parameter. By configuring the sizes as template parameters, we can ensure (1)
the specialization can be encoded into a C++ custom data type and (2) the
compiler is aware of the sizes at compile time.

Finally, once all aggregate policies are created, we can implement the forall
overloads within the OpenMP 4.5 backend. Listing 11 shows the overload for one
of the aggregate policies and the dispatch code expecting a policy and potentially
invoking the OpenMP 4.5 policy.

5 Case Study: OpenACC

OpenACC provides a different set of directives, constructs, and clauses for RAJA
to consider with code generation. First, OpenACC allows two different types of
region constructs: parallel and kernels. parallel is more synonymous with
the OpenMP 4.5 parallel construct while kernels provides a much higher-
level annotation of a loop nest. The compiler is ultimately able to make many
more decisions regarding code optimization and transformation when given a
kernels construct compared with a parallel construct. The increased num-
ber of clauses present in OpenACC also mandate additional tag definitions as
depicted in Listing 12. Like other backends, some tags are only valid in certain
contexts. Therefore, a program is illformed if a user specifies an invalid policy
construction.

Listing 13 shows definitions for a subset of OpenACC aggregate policies.
Parallel and Kernels are scope-based policies which do not generate any loop
iteration code. Policies such as NumGangs and VectorLength require template
parameters indicating their size but will always be additional clauses specified
for the scope-based policies. Likewise, Independent, Gang, and Worker policies
have no template arguments but must be specified as additional clauses for a
Loop construct.

Ultimately, the grammar defined by the OpenACC standard is adhered to
through the established constraints of our type system. Only valid execution
policies have specializations implemented. Listing 14 shows a subset of special-
izations defined in our OpenACC backend. It is important to note that the
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number of specializations we need is a function of the configuration parameters
which can either exist or not exist for a given construct. Since Kernels can have
any number of three clauses specified (NumGangs, NumWorkers, VectorLength),
we must implement 8 versions of kernels. Likewise, the Loop construct can have
any number of four clauses specified (Independent, Gang, Worker, Vector), re-
sulting in 16 versions required.

6 Evaluation

Our evaluation system is a CORAL Early Access System which has two IBM
POWER 8 processors and four NVIDIA P100 GPUs with NVLINK. The proces-
sor, a 10-core IBM POWER 8+, has a core frequency of 4.0GHz. Two processors
are on each node and is coupled with 256GB of DDR3 RAM. Only one NVIDIA
P100 (SMX variant) was used for consistent experimentation. For all of our tests
we restrict execution to GPU device 0 and leverage unified memory for data al-
location and offload. When using the proposed OpenACC backend, we compile
our test set with PGI Compiler 17.75. With the OpenMP 4.5 backend, we com-
pile our test set with IBM’s version of clang with OpenMP 4.5 support. Both of
these compilers and supporting libraries leverage CUDA 8.0.61.

6.1 Test Set

We used a collection of various kernels which highlight different access patterns
(dense linear algebra, stencils, and reductions of k-dimensions to k − 1 dimen-
sions). One limitation of our evaluation is the absence of any reductions. To
this end, RAJA cannot provide support for directive-based reductions because
the variable name is required within a directive reduction clause. Because of
this limitation, inclusion of directive-based reductions is out of scope for this
research – it is impossible to generate the directives with library-only solutions
(e.g. RAJA). RAJA does have support for reductions, but it is achieved using
allocated arrays and specialized kernels and combiners. OpenMP 4.5 reducers
are implemented and are currently being used, but we wanted to focus on exe-
cution policies instead of reducers.

5 This work was not feasible until the release of V17.7 in early August which added
support for lambdas and no-copy captures
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Kernel Description OpenACC OpenMP

Jacobi1D 1-D Stencil 64 16
Jacobi2D 2-D Stencil 256 64
Heat3D 3-D Heat Equation 1024 256
MatMul Matrix Multiplication 1024 256
MatVec Matrix-Vector Multiplication 256 64
VecAdd Vector Addition 64 16
Tensor2 Synthetic tensor contraction (2D to 1D) 256 64
Tensor3 Synthetic tensor contraction (3D to 2D) 1024 256
Tensor4 Synthetic tensor contraction (4D to 3D) 4096 1024

Shown above is the test set we end up comparing compiler overhead of RAJA-
based versions to directive-based implemented versions. There is a larger “tun-
ing” space for OpenACC versions due to the expanded clause options for loop

directives compared to the clause options available for parallel for and teams

distribute directives

6.2 Goals and Non-Goals

It is our goal in this evaluation section to highlight:

– Compare the compile-time overhead of leveraging meta-programming con-
cepts and C++ templates to drive code generation to directive-based ap-
proaches

– Compare the code generation of RAJA-fied loop nests to hand-written directive-
based loop nests

In no way to we intend to highlight the following:

– Compare the two compilers’ performance on the same kernel directly
– Compare OpenACC to OpenMP 4.5 in terms of:
• Compilation time
• Compilation resources (RAM, page faults, etc)
• Code generation
• Execution time

– Identify bottlenecks of toolchains without vendors’ knowledge of the problem
– Determine any limitations of drivers, software, hardware, or runtimes.

6.3 Compilation Overhead

For each kernel we show the compilation overhead. We used a wall clock timer
to measure the total amount of time it took to compile each set of kernels with
a given compiler. In the following table we highlight (1) the kernel name, (2) the
average compilation overhead when compiling the various versions of the kernel,
and (3) the backend used. The overhead is computed by taking the difference
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in compilation times over the directive-based compilation time. The average
overhead with the OpenACC backend is 95.07% while the average overhead
with the OpenMP backend is 38.78%.

Kernel OpenACC OpenMP

Jacobi1D 17.50% 8.75%
Jacobi2D 50.24% 20.42%
Heat3D 74.40% 30.91%
MatMul 80.28% 31.24%
MatVec 45.41% 16.47%
VecAdd 15.20% 6.24%
Tensor2 48.94% 17.57%
Tensor3 72.85% 27.53%
Tensor4 120.74% 59.29%

Average 95.07% 38.78%

Compilation overhead of test programs using a directive-based RAJA backend
instead of manually-specified directives

There are somewhat significant changes between our original kernels and
RAJA kernels. First, The original kernels are essentially C functions. The first
change that the RAJA versions make is converting from traditional for-loops to
RAJA Iterables and lambda expressions. A simple two-nested for-loop would go
from zero template instantiations to at least three (two for each Iterable and one
for the execution policy). When the code passes through the compiler for code
generation and specialization, the execution policy will dictate overload visibility
from substitution failure. In the case of a RAJA forall construct, we will attempt
to specialize for each possible backend (sequential, SIMD, OpenMP, OpenACC,
OpenMP, TBB, CUDA, etc). Determining the code path would require travers-
ing through all possible backends results in over 8 resolution attempts. Once a
policy is determined, then the per-backend specializations are evaluated and the
correct version is visited for code emission. The Iterable must also be validated
which adds two additional overload resolution checks per nest level. The current
RAJA forallN nested loop construct will construct at least 5 additional types
per nest level. On a three-nested loop, at least 18 type constructions and 110
overload resolution attempts will be made with an OpenACC execution policy.
For OpenMP 4.5 the overload resolution number reduces down to 62. Comparing
this to the zero type constructions and no overload resolutions from the origi-
nal kernel versions provides some additional insight as to where the compilation
overhead comes from.

6.4 Runtime Overhead

Next, we show the runtime overhead for each kernel. We used a timer to measure
the total amount of time it took to execute the kernel on the GPU with each
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set of kernels and a given compiler. In the following table we highlight (1) the
kernel name, (2) the average execution overhead when executing the various
versions of the kernel, and (3) the backend used. The average overhead with
the OpenACC backend is 1.66% while the average overhead with the OpenMP
backend is 1.69%. This overhead differs greatly from the compilation overhead,
suggesting that although compilation takes significantly longer, the emitted code
performs about the same as the plain directives. One of the underlying goals
of performance portability layers, such as RAJA, is to minimize the execution
overhead.

Kernel OpenACC OpenMP

Jacobi1D 2.52% 1.94%
Jacobi2D 1.25% 1.14%
Heat3D 1.08% 1.19%
MatMul 0.96% 1.01%
MatVec 1.13% 1.38%
VecAdd 0.21% 0.38%
Tensor2 0.98% 1.21%
Tensor3 1.34% 1.44%
Tensor4 2.18% 2.14%

Average 1.66% 1.69%

Runtime overhead of test programs using a directive-based RAJA backend
instead of manually-specified directives

7 Future Work and Conclusion

In this research we propose a backend design and implementation which pro-
vides a subset of OpenMP 4.5 and OpenACC to users of the RAJA portability
layer. We address concerns related to template specialization and overloading,
version explosion, compilation overhead, and runtime overhead. We highlight the
various components of our implementation including execution policy dispatch,
specialization for regions, and aggregation for various clause combinations found
within OpenMP and OpenACC.

We show that with the OpenMP 4.5 backend compiled with the IBM clang
we observe – on average – a 40% slowdown in compilation time but only a 1.69%
slowdown in execution time compared to directive-only based implementations
of the test programs. When using the OpenACC backend compiled with PGI
17.7 we observe – on average – a 95% slowdown in compilation time but only a
1.66% slowdown in execution time compared to directive-only based implemen-
tation of the test programs. We attribute most of the compilation slowdown to
the compiler needing to (1) instantiate many more templates compared to the
directive-based solutions and (2) perform template overload resolution to find
the most specific and valid version of policies. We plan to continue this research
by:
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– Augmenting our current reduction implementation for OpenMP 4.5 and ex-
tending it to the OpenACC backend

– Add more directives and clauses to the backends, specifically some of the
if() constructs being added with OpenMP 5.0. This would help reduce the
total number of specializations required

– Reduce the number of template instantiations necessary by simplifying the
check for the most specific policy

– Expand our results to include reductions and other high-level source code
transformations (collapsing for OpenACC and OpenMP 4.5, tiling for Ope-
nACC)
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namespace omp {

// all tags for the given backend shall be listed in tag_list

using tag_list = list<tags::Parallel, tags::Static,

tags::BarrierAfter, tags::For>;

template <typename Exec, typename Iterable,

typename Body, typename TagList>

exact<Exec, TagList, tags::For, tags::Static>

forall_impl(const Exec &&, Iterable && iter, Body && body) {

auto size = iter.size();

#pragma omp for schedule(static, Exec::static_chunk_size)

for (decltype(size) i = 0; i < size; ++i)

body(*(iter.begin() + i));

}

template <typename Exec, typename Iterable,

typename Body, typename TagList>

exact<Exec, TagList, tags::Parallel>

forall_impl(const Exec &&, Iterable && iter, Body && body) {

#pragma omp parallel

{

forall(typename Exec::inner(),

std::forward<Iterable>(iter), std::forward<Body>(body));

}

}

}

template <typename Exec, typename Iterable,

typename Body, typename TagList>

exact<Exec, TagList, tags::BarrierAfter>

forall_impl(const Exec &&, Iterable && iter, Body && body) {

forall(typename Exec::inner(),

std::forward<Iterable>(iter), std::forward<Body>(body));

#pragma omp barrier

}

}

// dispatch to target omp policy

template <typename Exec, typename Iterable, typename Body>

typename std::enable_if<Exec::policy == Policy::openmp>::type

forall(const Exec &&p, Iterable && iter, Body && body) {

omp::forall_impl<Exec, omp::tag_list>(

std::forward<const Exec>(p),

std::forward<Iterable>(iter),

std::forward<Body>(body));

}

Listing 8: forall implementations for a subset of OpenMP 3.x specializations.
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namespace target_omp {

namespace tags {

// include all tags from namespace omp::tags

using namespace omp::tags;

struct Target {};

struct Teams {};

struct Distribute {};

} // end namespace tags

using tag_list =

list<tags::Target, tags::Teams, tags::Distribute, tags::Parallel,

tags::Static, tags::BarrierAfter, tags::BarrierBefore, tags::For>;

} // end namespace target_omp

Listing 9: Tag definitions for OpenMP 4.5. Reuse of tags from OpenMP 3.x
reduces the overall implementation size with minimal cost.

namespace target_omp {

template <typename... Args>

using policy = PolicyBaseT<Policy::target_openmp, Platform::undefined, Args...>;

using omp::BarrierAfter;

using omp::BarrierBefore;

using omp::For;

using omp::Parallel;

using omp::Static;

template <unsigned int N>

struct TargetTeamsDistribute : policy<tags::Target, tags::Teams, tags::Distribute> {

constexpr static unsigned int num_teams = N;

};

template <unsigned int N>

struct TargetTeamsDistributeParallelFor

: policy<tags::Target, tags::Teams, tags::Distribute, tags::Parallel, tags::For> {

constexpr static unsigned int num_teams = N;

};

template <unsigned int N, unsigned int M>

struct TargetTeamsDistributeParallelStatic

: policy<tags::Target, tags::Teams, tags::Distribute, tags::Parallel,

tags::For, tags::Static> {

constexpr static unsigned int num_teams = N;

constexpr static unsigned int static_chunk_size = M;

};

} // end namespace target_omp

Listing 10: Aggregate policy definitions for OpenMP 4.5. In addition to all
OpenMP 3.x policies, three new policies are added to aid with target offload
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namespace target_omp {

template <typename Exec, typename Iterable,

typename Body, typename TagList>

exact<Exec, TagList, tags::Target, tags::Teams,

tags::Distribute, tags::Parallel, tags::For>

forall_impl(const Exec &&, Iterable && iter, Body && body) {

auto size = iter.size();

#pragma omp target teams distribute parallel for \

num_teams(Exec::num_teams)

for (decltype(size) i = 0; i < size; ++i) {

body(*(iter.begin() + i));

}

}

} // end namespace target_omp

template <typename Exec, typename Iterable, typename Body>

typename std::enable_if<Exec::policy == Policy::target_openmp>::type

forall(const Exec &&p, Iterable && iter, Body && body) {

target_openmp::forall_impl<Exec, omp::tag_list>(

std::forward<const Exec>(p),

std::forward<Iterable>(iter),

std::forward<Body>(body));

}

Listing 11: A forall specialization shown for OpenMP 4.5. Note that the second
function performs tagged dispatch of a policy to an OpenMP 4.5 policy if the
type matches.
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namespace openacc {

namespace tags {

struct Parallel {};

struct Kernels {};

struct Loop {};

struct Independent {};

struct Gang {};

struct Worker {};

struct Vector {};

struct NumGangs {};

struct NumWorkers {};

struct VectorLength {};

} // end namespace tags

using tag_list =

list<tags::Parallel, tags::Kernels, tags::Loop, tags::Independent,

tags::Gang, tags::Worker, tags::Vector, tags::NumGangs,

tags::NumWorkers, tags::VectorLength>;

} // end namespace openacc

Listing 12: Tag definitions for OpenACC. Note the difference between Gang and
NumGangs – the former indicates a clause on a loop construct while the latter
specifies the number of gangs on a parallel or kernels construct.

namespace openacc {

template <typename... Args>

using policy = PolicyBaseT<Policy::openacc, Platform::gpu, Args...>;

template <unsigned int N>

struct NumGangs : policy<tags::NumGangs> {

static constexpr unsigned int num_gangs = N;

};

template <typename Inner>

struct Parallel : policy<tags::Parallel>, Inner {

using inner = Inner;

};

struct Independent : policy<tags::Independent> {};

template <typename ... Options>

struct Loop : policy<tags::Loop>, Options... {};

} // end namespace openacc

Listing 13: A subset of aggregate policy definitions for OpenACC. The user can
directly construct their own RAJA OpenACC type policy or leverage one of the
policies RAJA provides.
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namespace openacc {

template <typename Exec, typename Iterable,

typename Body, typename TagList>

exact<Exec, TagList, tags::Parallel, tags::NumGangs>

forall_impl(const Exec &&, Iterable && iter, Body && body) {

#pragma acc parallel num_gangs(Exec::num_gangs)

forall(Exec::inner(),

std::forward<Iterable>(iter),

std::forward<Body>(body));

}

template <typename Exec, typename Iterable,

typename Body, typename TagList>

exact<Exec, TagList, tags::Kernels, tags::NumGangs, tags::VectorLength>

forall_impl(const Exec &&, Iterable && iter, Body && body) {

#pragma acc kernels num_gangs(Exec::num_gangs) \

vector_length(Exec::vector_length)

forall(Exec::inner(),

std::forward<Iterable>(iter),

std::forward<Body>(body));

}

// A total of 8 specializations are required for each of tags::Parallel

// and tags::Kernel. Only one is shown for each above.

template <typename Exec, typename Iterable,

typename Body, typename TagList>

exact<Exec, TagList, tags::Loop, tags::Independent, tags::Vector>

forall_impl(const Exec &&, Iterable && iter, Body && body) {

auto size = iter.size();

#pragma acc loop independent vector

for (decltype(size) i = 0; i < size; ++i) {

body(*(iter.begin() + i));

}

}

// A total of 16 specializations are required for tags::Loop

// Only one is shown above.

} // end namespace openacc

Listing 14: forall specializations for OpenACC. Note we must provide spe-
cializations for any number of kernels or parallel constructs with the
{num gangs, num workers, vector length} clauses either (1) being speci-
fied or (2) omitted. The same must be done for loop constructs with
{independent,gang,worker,vector}. We do not show the OpenACC policy
dispatch overload for brevity.
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