CSCl 340: Computational Models
Finite Automata with Output

Goals and Limitations

Goal: designing a mathematical model for a computer where the input string represents the program and data

What if we want to introduce output? The state of the machine could be its output - a yes-no oracle of sorts

All we've done so far is recognize and accept languages! Machines should be capable of doing more.
G. H. Mealy (1955) and E. F. Moore (1956) independently invented two separate models for Finite Automata that have output possibilities

The Moore machine

Definition

A Moore machine is a collection of five things:
(1) A finite set of states $q_{0}, q_{1}, q_{2}, \ldots$ where q_{0} is the start state
(2) An alphabet of letters for forming the input string

$$
\Sigma=\left\{\begin{array}{llll}
a b & \ldots
\end{array}\right\}
$$

(3) An alphabet of possible output characters

$$
\Gamma=\left\{\begin{array}{llll}
x & y & z & \ldots
\end{array}\right\}
$$

(4) A transition table that shows for each state and each input letter which state is reached
(5) An output table that shows which character from Γ is printed by each state as it is entered (this means when we "start" execution we print the character from the start state)

Example of a Moore machine

Input: $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\} \quad$ Output: $\Gamma=\left\{\begin{array}{ll}0 & 1\end{array}\right\} \quad$ States: $q_{0}, q_{1}, q_{2}, q_{3}$

Old	Output	After a	After b
q_{0}	1	q_{1}	q_{3}
q_{1}	0	q_{3}	q_{1}
q_{2}	0	q_{0}	q_{3}
q_{3}	1	q_{3}	q_{2}
	a		

Example: count how many times $a a b$ occurs

Tracing aababbaabb

Input		a	a	a	b	a	b	b	a	a	b	b
State	q_{0}	q_{1}	q_{2}	q_{2}	q_{3}	q_{1}	q_{0}	q_{0}	q_{1}	q_{2}	q_{3}	q_{0}
Output	0	0	0	0	1	0	0	0	0	0	1	0

Example: count how many times $a a b$ occurs

Interesting properties from the previous slide:

- The number of substrings $a a b$ in the input string will be exactly the number of 1 's in the output string.
- Given a language L and an FA that accepts it, we can "print" 0 in any non-final state and 1 in any final state.
- The 1's in any output sequence mark the end positions of all substrings $a a b$
- If we remove the output ability and mark output states with 1 as final and output states with 0 as non-final, we convert the Moore machine to a standard FA

The Mealy machine

Definition

A Mealy machine is a collection of four things:
(1) A finite set of states $q_{0}, q_{1}, q_{2}, \ldots$ where q_{0} is the start state
(2) An alphabet of letters $\Sigma=\left\{\begin{array}{lll}a & b\end{array}\right\}$ for forming input strings
(3) An alphabet of output characters $\Gamma=\left\{\begin{array}{llll}x & y & z & \ldots\end{array}\right\}$
(4) A pictorial representation with states represented by circles and directed edges representing transitions.

- each edge is labeled with a compound symbol of the form i / o where i is an input letter and o is an output letter
- every state must have only one outgoing edge for each input letter
- the edge we travel is determined by the input letter i
- while traveling on the edge, we must print out the output character o

Example of a Mealy machine

Input: $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\} \quad$ Output: $\Gamma=\left\{\begin{array}{ll}0 & 1\end{array}\right\} \quad$ States: $q_{0}, q_{1}, q_{2}, q_{3}$

Tracing $a a a b b$

Example of a Mealy machine

Input: $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\} \quad$ Output: $\Gamma=\left\{\begin{array}{ll}0 & 1\end{array}\right\} \quad$ States: $q_{0}, q_{1}, q_{2}, q_{3}$

Tracing aaabb yields 01110

Example: One's complement of an input bit string

$$
\Sigma=\Gamma=\left\{\begin{array}{ll}
0 & 1
\end{array}\right\}
$$

Example: One's complement of an input bit string

$$
\Sigma=\Gamma=\left\{\begin{array}{ll}
0 & 1
\end{array}\right\}
$$

Yes, really - that's it

Example: The increment machine

- assume input is a binary number which is reversed
- output should be "one larger" than the input
- Approach: Three states representing
(1) start - have yet to read anything
(2) oncecarry - "right-most" bits were set - carry until 0
(3) nocarry - we have already added the one

Connection between Mealy machines and circuits?

- Once we have an incrementer, we can build another machine to perform binary addition
- Once we have binary addition and 1's complement, we can implement subtraction!

Theorem

If a and b are strings of bits, then $a-b$ can be performed by
(1) adding the 1's complement of b to a ignoring overflow

2 incrementing the results by 1

$$
\begin{aligned}
14-5 & =1110-0101 \\
& =1110+\text { ones-complement }(0101)+1 \\
& =1110+1010+1 \\
& =[1] 1001 \\
& =9
\end{aligned}
$$

Mealy machines recognizing languages

- Mealy machines cannot "accept" or "reject" an input string
- We can recognize a language by having the output string answer some questions about the input
Recognizing words that contain a double letter

Moore = Mealy

Equivalence has been measured by accepting the same language. Moore and Mealy machines cannot be compared in this way.

Problem - why not just compare output?

Moore machines output one extra character!

Solution

Given the Mealy machine Me and the Moore machine Mo which prints the automatic start character x, we will say these two machines are equivalent if for every input string, the output string from $M o$ is exactly x concatenated with the output from Me.

Given Mo , there is an equivalent Me

Theorem

If Mo is a Moore machine, then there is a Mealy machine, Me, that is equivalent to it

Proof (by construction).

- Consider any state in Mo, q.
- The output character for q shall be t
- All incoming edges for q are labeled with an input letter.
- Relabel the edges coming into q (e.g. a, b, c, \ldots) with the output from the state q (e.g. $a / t, b / t, c / t, \ldots$)
- remove the output of character t from q
- repeat for each state - this results in a Me where the characters that get printed are exactly what Mo would have printed

Example of Mo to Me (Moore to Mealy)

Example of Mo to Me (Moore to Mealy)

Handling q_{0}

Example of Mo to Me (Moore to Mealy)

Handling q_{1}

Example of Mo to Me (Moore to Mealy)

Handling q_{2}

Example of Mo to Me (Moore to Mealy)

Handling q_{3}

Given $M e$, there is an equivalent $M o$

Theorem

If Me is a Mealy machine, then there is a Moore machine, Mo, that is equivalent to it

Proof (by construction).

- Consider any state in Me, q.
- All incoming edges for q are labeled with an input letter and character t.
- If all incoming edges have the same t, set the output character of q to be t and remove t from all incoming edges
- Else, replicate q (including outgoing edges) for each unique t and assign incoming edges to the right copy of q. Remove t from all incoming edges.
- repeat for each state
- if there is a state with no incoming edges, assign from Γ

Example of Me to Mo (Mealy to Moore)

Example of Me to Mo (Mealy to Moore)

Handling q_{0} (incoming edges of 0 and 1)

Example of Me to Mo (Mealy to Moore)

Handling q_{1} (incoming edges of only 1)

Example of Me to Mo (Mealy to Moore)
Handling q_{2} (incoming edges of 0 and 1)

Example of Me to Mo (Mealy to Moore)
Handling q_{3} (incoming edges of only 0)

Example of Me to Mo (Mealy to Moore)

Redrawn to eliminate overlapping edges

Comparison Table for Automata

	FA	TG	NFA	NFA- λ	Moore	Mealy
Start States	1	1+	1	1	1	1
Final States	0+	0+	0+	0+	0	0
Edge Labels	$e \in \Sigma$	$w \in \Sigma^{*}$	$e \in \Sigma$	$\begin{aligned} & e \in \Sigma \\ & \text { and } \lambda \end{aligned}$	$e \in \Sigma$	$\begin{aligned} & i / o \\ & i \in \Sigma \\ & o \in \Gamma \end{aligned}$
Number of edges from each state	$\begin{aligned} & 1 \text { per } \\ & e \in \Sigma \end{aligned}$	Arbitrary	Arbitrary	Arbitrary	$\begin{aligned} & 1 \text { per } \\ & e \in \Sigma \end{aligned}$	$\begin{aligned} & 1 \text { per } \\ & e \in \Sigma \end{aligned}$
Deterministic	Yes	No	No	No	Yes	Yes
Output	No	No	No	No	Yes	Yes
Page in Book	53	79	135	146	150	152
Slide	Ch 5 \#2	Ch 6 \#5	Ch 7 \#17	N/A	Ch 8 \#2	Ch 8 \# ${ }_{17}$

