CSCI 340: Computational Models
Finite Automata

Background: States and Determinism

Aside: Discussion on board games and states

- Where can pieces exist on a board?
- How do pieces move? (deterministic)
- When is the game over?

When we consider a "map" of all of the states and where they go, we create a state diagram

Finite Automaton

A finite automaton is a collection of three things:
(1) A finite set of states, one of which is designated as the initial state, called the start state, and some (maybe none) of which are designated as final states.
(2) An alphabet Σ of possible input letters
(3) A finite set of transitions that tell for each state and for each letter of the input alphabet which state to go to next.

A Brief Example

(1) Three states: x, y, z. Of which x is the starting state and z is the only final state
(2) $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$
(3) Transition Rules:
(1) From state x and input a, go to state y.
(2) From state x and input b, go to state z.
(3) From state y and input a, go to state x.
4) From state y and input b, go to state z.
(5) From state z and input any, go to state z.

This defines a language recognizer. What language does it accept?

Definition of FA as Transition Table

	a	b
Start x	y	z
y	x	z
Final z	z	z

- states are listed along the left
- alphabet characters are listed along the top
- The "cell" at the intersection of a state and character indicate which state should be transitioned to

Mathematical Definition

(1) A finite set of states $Q=\left\{\begin{array}{llll}q_{0} & q_{1} & q_{2} & \ldots\end{array}\right\}$ of which q_{0} is the start.
(2) A subset of Q called the final states.
(3) An alphabet $\Sigma=\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots\end{array}\right\}$.
(4) A transition function mapping each state-letter pair with a state:

$$
\delta\left(q_{i}, x_{j}\right)=x_{k}
$$

NOTE: Every state has as many outgoing edges as there are letters in the alphabet. It is possible for a state to have no incoming edges or to have many.

Transition Diagram

Another Example

Question

What language does this FA accept?

Simplification

Another Example

Question

What language does this FA accept?

Simplification

Examples

Finite Automaton Accepting Everything $\Sigma=\{a, b\}$

Examples

Finite Automaton Accepting Everything $\Sigma=\{a, b\}$

Finite Automaton Accepting Nothing $\Sigma=\{a, b\}$

Examples

Finite Automaton Accepting Everything $\Sigma=\{a, b\}$

Finite Automaton Accepting Nothing $\Sigma=\{a, b\}$

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this programmatically?
- How can we represent this with states?

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this programmatically?
- How can we represent this with states?

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this programmatically?
- How can we represent this with states?

a:

$(\mathbf{a}+\mathbf{b})^{*}$:

$$
\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}:
$$

Question

What if we encounter $a b$ in q_{0} ?

An extension on $\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}$

An extension on $\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}$

All of these are equivalent!

Matching strings with triple letters ($a a a$ or $b b b$)

- Sequence of a 's

Matching strings with triple letters ($a a a$ or $b b b$)

- Sequence of a 's or b's

Matching strings with triple letters ($a a a$ or $b b b$)

- Proper state transitions when sequence broken

Chalkboard Examples

Construct FAs which accept the following:

- only the exact string baa
- all words not ending in b
- all words with an odd number of a 's
- all words with different first and last letters
- all words with length divisible by 3

Revisiting EVEN-EVEN

Three cases:
(1) aa
(2) bb

3 $(\mathbf{a b}+\mathbf{b a})(\mathbf{a} \mathbf{a}+\mathbf{b b})^{*}(\mathbf{a b}+\mathbf{b a})$

Revisiting EVEN-EVEN

Three cases:
(1) aa handled here
(2) bb

3 $(\mathbf{a b}+\mathbf{b a})(\mathbf{a} a+b b)^{*}(a b+b a)$

Revisiting EVEN-EVEN

Three cases:
(1) aa
(2) bb handled here

3 $(\mathbf{a b}+\mathbf{b a})(\mathbf{a} \mathbf{a}+\mathbf{b})^{*}(\mathbf{a b}+\mathbf{b a})$

Revisiting EVEN-EVEN

Three cases:
(1) aa
(2) bb

3 ($\mathbf{a b}+\mathbf{b a})(\mathbf{a a}+\mathbf{b b})^{*}(\mathbf{a b}+\mathbf{b a})$ handled here (q3 represents $\mathbf{a b}+\mathbf{b a}$)

Homework 2b

(1) Build an FA that accepts only the language of all words with b as the second letter. Show both the picture and the transition table for this machine and find a regular expression for the language.
2. Find two FA's that satisfy these conditions: Between them they accept all words in $(\mathbf{a}+\mathbf{b})^{*}$, but there is no word accepted by both machines.
(3) Describe the languages accepted by the following FA's:
i

(continued on next page)

Homework 2b
(3) Describe the languages accepted by the following FA's:

