CSCI 340: Computational Models

Finite Automata

Background: States and Determinism

Aside: Discussion on board games and states

- Where can pieces exist on a board?
- How do pieces move? (deterministic)
- When is the game over?

When we consider a "map" of all of the states and where they go, we create a **state diagram**

Finite Automaton

A **finite automaton** is a collection of three things:

- A finite set of states, one of which is designated as the initial state, called the **start state**, and some (maybe none) of which are designated as **final states**.
- ② An **alphabet** Σ of possible input letters
- 3 A finite set of **transitions** that tell for each state and for each letter of the input alphabet which state to go to next.

A Brief Example

- Three states: x, y, z. Of which x is the starting state and z is the only final state
- **2** $\Sigma = \{ a \ b \}$
- Transition Rules:
 - 1 From state x and input a, go to state y.
 - 2 From state x and input b, go to state z.
 - 3 From state y and input a, go to state x.
 - From state y and input b, go to state z.
 - 5 From state z and input any, go to state z.

This defines a **language recognizer**. What language does it accept?

Definition of FA as Transition Table

	а	b
Start x	У	Z
У	X	Z
Final z	Z	Z

- states are listed along the left
- alphabet characters are listed along the top
- The "cell" at the intersection of a state and character indicate which state should be transitioned to

Mathematical Definition

- **1** A finite set of states $Q = \{q_0 \ q_1 \ q_2 \ \ldots\}$ of which q_0 is the start.
- ② A subset of Q called the final states.
- **3** An alphabet $\Sigma = \{x_1 \ x_2 \ x_3 \ \ldots \}$.
- **4** A transition function mapping each state-letter pair with a state:

$$\delta(q_i,x_j)=x_k$$

NOTE: Every state has as many **outgoing edges** as there are letters in the alphabet. It is possible for a state to have no **incoming edges** or to have many.

Transition Diagram

Another Example

Question

What language does this FA accept?

Simplification

Another Example

Question

What language does this FA accept?

Simplification

Examples

Finite Automaton Accepting Everythin $\overline{g} \Sigma = \{a, b\}$

Examples

Finite Automaton Accepting Everything $\Sigma = \{a, b\}$

Finite Automaton Accepting Nothing $\Sigma = \{a,b\}$

Examples

Finite Automaton Accepting Everything $\Sigma = \{a, b\}$

Finite Automaton Accepting Nothing $\Sigma = \{a, b\}$

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this programmatically?
- How can we represent this with states?

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this programmatically?
- How can we represent this with states?

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this programmatically?
- How can we represent this with states?

 $\mathbf{a}(\mathbf{a}+\mathbf{b})^*$

a:

 $(a + b)^*$:

$a(a+b)^*$

a:

 $a(a + b)^*$:

 $(a + b)^*$:

Question

What if we encounter a b in q_0 ?

An extension on $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$

An extension on $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$

All of these are equivalent!

Matching strings with triple letters (aaa or bbb)

• Sequence of a's

Matching strings with triple letters (aaa or bbb)

• Sequence of a's or b's

Matching strings with triple letters (aaa or bbb)

Proper state transitions when sequence broken

Chalkboard Examples

Construct FAs which accept the following:

- only the exact string baa
- all words not ending in b
- all words with an odd number of a's
- all words with different first and last letters
- all words with length divisible by 3

- aa
- **2** bb

- aa handled here
- 2 bb

- aa
- **a bb** handled here
- (ab + ba)(aa + bb)*(ab + ba)

- aa
- 2 bb
- (3) $(ab + ba)(aa + bb)^*(ab + ba)$ handled here (q3 represents ab + ba)

Homework 2b

- Build an FA that accepts only the language of all words with b as the second letter. Show both the picture and the transition table for this machine and find a regular expression for the language.
- **2** Find two FA's that satisfy these conditions: Between them they accept all words in $(\mathbf{a} + \mathbf{b})^*$, but there is no word accepted by both machines.
- 3 Describe the languages accepted by the following FA's:

(continued on next page)

Homework 2b

3 Describe the languages accepted by the following FA's:

