
OCaml: Tuples
Programming Languages

William Killian
Millersville University

Tuples

• Tuples are a product type
• Used for when we want to group entities together
• Elements are access by location

type student = string * int * float

• We created a new type called student
• It is an alias (or another name for a tuple)
• This tuple contains a string, an int, and a float

Tuple Syntax

• How could we store a point?

• What is its datatype (as a tuple)?

• How can we create a new point?

Tuple Syntax

• How could we store a point?
We should be able to store a point as a pair of coordinates
We can access its data by “location”

• What is its datatype (as a tuple)?
type point = float * float
This means that a point is modeled as two floats

• How can we create a new point?
let my_point = (1.2, 0.0)
let my_point : point = (1.2, 0.0)
let my_point : float * float = (1.2, 0.0)
(* all three of these are the same! *)

Tuple Syntax

Expression / Value:
("Will Killian", 327291, 3.38)

Type:
string * int * float

Always enclosed in parentheses
Datatypes can be deduced for each element
Immutable – you cannot change a tuple

• You can read from a tuple
• You can create a new tuple

Tuple Bindings

Binding refresher: providing a name to a value

let point = (2.0, 3.14)

Extracting the “x” value of the point:
let (x, _) = point

Extracting the “y” value of the point:
let (_, y) = point

Note: The _ means to ignore

Tuple Bindings

let big = (1, 3.14, "hello", true, 5)
1. What is the type of big?

2. How can we extract the 2nd, 4th, and 5th elements
with identifiers "pi", "passing", and "courses" ?

3. How can we compare the 1st and 5th element for
equality? (hint: two steps)

Tuple Bindings

let big = (1, 3.14, "hello", true, 5)
1. What is the type of big?

int * float * string * bool * int

2. How can we extract the 2nd, 4th, and 5th elements
with identifiers "pi", "passing", and "courses" ?

let (_, pi, _, passing, courses) = big

3. How can we compare the 1st and 5th element for
equality? (hint: two steps)

let eq = let (first, _, _, _, last) in
first = last

Pattern Matching

• Tuples can lend to clean, expressive code when
combined with pattern matching
• Can be combined with other patterns (e.g. for lists)

Problem: Compute the centroid (geometric average)
of three points which form a triangle.

let points = [(0.0, 1.0),
(6.0, 2.0),
(3.0, 5.0)]

What is the type of points?

Pattern Matching Examples

Normal List:
match l with
| [] -> (* empty list *)
| h::t -> (* have more *)

Normal Tuple:
match p with
| (0,0) -> (* origin *)
| (x,y) -> (* general point *)

Centroid

let centroid lst =

let rec average sum n lst =

match lst with
| [] ->

let (x, y) = sum in (* pull out each coordinate *)
(x /. n, y /. n) (* compute average *)

| (x,y)::lst’ ->

(* pull out each coordinate *)
let (xs, ys) = sum in (* evolve arguments *)

average (x +. xs, y +. ys) (n +. 1.0) lst'
in

average (0.0, 0.0) 0.0 lst (* sum=(0.0, 0.0) n=0.0 *)

Pattern Matching Problem

• Count the number of origin points in a list

let rec count_origin lst =

Pattern Matching Problem

• Count the number of origin points in a list

let rec count_origin lst =
match lst with
| [] -> 0
| (0,0)::lst' -> count_origin lst' + 1
| _::lst' -> count_origin lst'

Pattern Matching Problem

• Count the number of origin points in a list

let rec count_origin lst =
match lst with
| [] -> 0
| p::lst' -> count_origin lst' +

(if p = (0,0) then 1 else 0)

