

OPENACC s...

a directives-based parallel
programming model
designed for usabillity,
performance, and

m portability
:Openjtlcc:

& S

Add Simple Compiler Directive

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>
}
}

OPENACC MEMBERS

o A cmasy L ENCAR Q AlRA% |€OCC|

S s nVIDIA. nnnnnnnnnnnnnnnnnnnnnnn AMD OSAKA UNIVERSITY

\ n —~ZDR @

E :/.'ﬁ' HELMHOLTZ
CDmc BERKELEY LAB |IENTRLIM DRESOEM TOTAL
CENTER FOR DEVELOPMENT OF Kivg Abituloh Usive ity INDIANA UNIVERSITY ROZSEMDORD
ADVANCED COMPUTING Scwence snd Technokgy
I
Menbor RSTTYor L

Graphics EIAWARE. [LLINOILS

UNIVIRETY OF ILLINOIS AT UN NA CHAM OGN
RRIEKXRF
Toky; ln\smm of Technology

,ﬁi?&j{% ﬁﬂ L BT !IIF-! VirginiaTECh B“n ﬂﬂl'lﬂ’llEll ‘\% Stony Brook

University of Tukuba RN TR NATIONAL LABORATORY University

OPENACC COMMUNITY MOMENTUM

3 OF TOP 5 HPC APPS 5 OF 13 CAAR CODES ACCELERATED APPS

Intersect360

RESEARCH

/\A\
summit

00
150/2
/

39
SC15 SC16 SC17 SC18 ISC19

SINCE GCC 5.0 SLACK MEMBERS 180,000+ DOWNLOADS

1154

692
361
150 305
|

ISC17 SC17 [SC18 SC18 [SC19

PGI

Community
—— EDITION —

GAUSSIAN 16

g g Using OpenACC allowad us to continue
development of our fundamental
algorithms and software capabilities
simultanecusly with the GPU-related
work. In the end, we could use the
same code base for SMP, cluster/
network and GPU paralleiism, PGI's
compilers were essential to the success
of our afforts.

b

Ihe CAAR praject pravided us with
carly access Lo Summil. hardware and
access ta PGl compiter experts. Bath
of these were critical to our success.
PGI's DpendGC support temains the
best available and is competitive with
e moee s ive programeming

madel approaches.

VMD

Due to Amdahl’s law, we need to port
SEEE - more parts of our code o the GPU if were
going to speed ft up. But the sheer
number of rautines pases & challenge.
DOpenace directives give us a low-cost
approach to getting at least same speed-
Up out of these second-tier routmes. In
mary casas its compietely sufficient
because with the cument algorithms, GRU
performance is bandwidth-bound. R

SANJEEVINI

In an acsdemic environment

S E maintenance and speadup of exiating
«codes is a tedious task. OpanACC
provides a great platform for

sclenteats 1o

both fasks wihout involving & lot of
efforts ar manpower In speeding up the
@nfire computationa! task.

e

NUMECA FINE/Open

-

¥

B We've effectively used
OpenACC for heterogeneous
computing in ANSYS Fluent
with impressive performance,
We're now applying this work
to more of our models and
new platforms.

B = Parling our unslructured C++

CFD solver FINE/Open to GPUs

using OpenACC would have

been impossible two or three
years ago, but OpenACC has
developed enough that we're

naw getting some really gooq -

results.

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs,

IBM-CFD

- e

E

DRENALE can prove: 1o be 3 nandy 100l for
computaticnal engineers and researchers 10

00 of non-linear dynamics

15 boundary Incompresstie:

A0 mevte s0NOTS haus Bocn ¥
e e crveral seakeity

=

ANSYS FLUENT

For VASP, OpenACC is the way
forward for GPU acoelesation.
Performance is similar and in some
cases better than CUDA C, and
OpenACC dramatically decreases
GPU development and maintenance
efforts. We're excited to collaborate

with NVIDIA and PGI as an carly
adopter of CUDA Unified Memory.

SYNOPSYS

PWscf (Quantum
ESPRESSO)

Using OpenACC, we've GPU-
accelerated the Synopsys TCAD
Sentaurus Device EMW simulator

to speed up optical simulations of

image sensors. GPUs are key to
improving simulation throughput
in the design of advanced image
sensors.

| b=

CUDA Fortran gives us the full
performance potential of the CUDA

programming model and NVIDIA GPUs.
Whete: leweraging the potenbal of expiat

data movement, ISCUF KERNELS
directives give us productadly and

sowce code mamanabidy I's the best

of both worids.

-

==

M 8

% OpenACC made it practical to
develop for GPU-based hardware

while retaining a single source for

almost all the COSMO physics
code.

MPAS-A

Our team has been evaluating
" OpenACC as a pathway to

performance portability for the Model

for Prediction (MPAS) atmospheric
model. Using this approach on the
MPAS dynamical core, we have
achleved performance on a single
P100 GPU exivalent 1o 2.7 dual

socketed Intel Xeon nodes on our new

Cheyenne supercomputer. o

GAMERA

Eglzﬁ

ot A

With OpenACC and a compute
node based on NVIDIA's Tesla
P100 GPU, we achieved more
than a 14X speed up over a K

Computer node running our
earthquake disaster simulation
code -

[V

Adding OpenACC into MAS has given us
the ability to migrate medium-sized
simulations from a multi node CPU
chinter 10 a single mulli-GPU server.
Thes implementation yielded a portable
single-source code for bath CPU and
GPU runs. Future work will add
OpepACC to the remaining model
features, cnabling GPU accelerated
realistic solar storm modcling. !

INTRODUCTION TO OPENACC

OpenACC Directives

Manage #pragma acc data copyin(a,b) copyout(c)
Data /{
Movement

#pragma acc parallel

. {
Initiate ,a””’}'#pragma acc loop gang vector

Earallell for (i = 0; i < n; ++1i) {
xecution c[i] = a[i] + b[i];
Optimize })

Loop

o OpenACC

Directives fFor Accelerators

e [ncremental
e Single source

° Interoperable
e Performance portable
e CPU, GPU, Manycore

OPENACC SYNTAX

Syntax for using OpenACC directives in code

#pragma acc directive clauses I$acc directive clauses
<code> <code>

A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

“‘acc” informs the compiler that what will come is an OpenACC directive

Directives are commands in OpenACC for altering our code.

Clauses are specifiers or additions to directives.

OPENACC PARALLEL LOOP DIRECTIVE

Expressing parallelism

#pragma acc parallel loop

{

for(int 1 = 9; 1 < N; i++)
{
// Do Something

}

Generate parallelism and
parallelize the next loop
} nest

I

I

I

I

I

I

OPENACC EXAMPLE

EXAMPLE: JACOBI ITERATION

= [teratively converges to correct value (e.g. Temperature),
by computing new values at each point from the average
of neighboring points.

= Common, useful algorithm

= Example: Solve Laplace equation in 2D: V4f(x,y) = 0

A(1,]+1)
)

AG-1,))9—% A(i+1,])

.A(i,) oy AL+ A+ L)+ ARG 1)+ A+ 1)
. . Ak+1(l)]) — 4
A(])J'1)

JACOBI ITERATION: C CODE

while (err > tol && iter < iter max) {

err=0.0; Iterate until converged

Ilterate across matrix

for(int j = 1; j < n-1; j++) { elements

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[Jj]1[i+1l] + A[j]1[i-1] + Calculate new value from
A[j-1][i] + A[j+1]1[i]); neighbors

err = max(err, abs(Anew[j][i] - A[Jj]I[i])) -
}

Compute max error for
} convergence

for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j1[i] = Anew[j]l[i]; Swap input/output arrays

}
}

iter++;

PARALLELIZE WITH OPENACC PARALLEL LOOP

while (err > tol && iter < iter max) ({

err=0.0;
#pragma acc parallel loop reduction (max:err) ‘ Parallelize first loop nest,
for(int j = 1; j < n-1; j++) { max reduction required.

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][1i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[3j]1I[i])) -
}
}
for(int j = 1; j < n-1; j++) {
for(int i =1; 1i < m-1; i++) {
A[j][1i] = Anew[]j][i]’
. We didn’t detail how to

iter+s; parallelize the loops, just which
loops to parallelize.

}

BUILDING THE CODE (GPU) Instruct the compiler to

build for an NVIDIA Tesla
e GPU using “CUDA
$ pgcc -fast —ta=tesla:managedI—M1nfo=accel laplace2d uvm.c "
- Managed Memory

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */
Generating reduction (max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

Print compiler feedback
SO we can see what it did.

63, Generating implicit copyin(A[:])
Generating implicit copyout (Anew[:])
Generating implicit copy (error)

66, Loop is parallelizable

74, Accelerator kernel generated
Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector (128) /* threadIdx.x */

74, Generating implicit copyin(Anew|[:])
Generating implicit copyout(A[:])

77, Loop is parallelizable

* More on this in a moment

BUILDING THE CODE (GPU)

$ pgcc -fast -ta=tesla:managed -Minfo=accel laplace2d uvm.c

main:

63,

63,

66,
74,

74,

77,

Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */
Generating reduction (max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

Generating implicit copyin(A[:])

Generating implicit copyout (Anew[:])

Generating implicit copy (error)

Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector (128) /* threadIdx.x */
Generating implicit copyin(Anew[:])

Affirms that a GPU kernel
was generated.

Generating implicit copyout(A[:])
Loop is parallelizable

Compiler detected
possible need to move
data and handled it for

us.*

* More on this in a moment

BUILDING THE CODE (MULTICORE)

$ pgcc -fast|-ta=multicoref=Minfo=accel laplace2d uvm.c

main:

63,
64,

66,
74,

75,
77,

Generating Multicore code

64, #pragma acc loop gang

Accelerator restriction: size of the GPU copy of Anew,.
Generating reduction (max:error)

Building for a multicore
CPU requires changing
only a compiler flag.

Loop is parallelizable
Generating Multicore code
75, #pragma acc loop gang

Accelerator restriction: size of the GPU copy of Anew,A is unknown

Loop is parallelizable

OPENACC SPEED-UP

45.00X

41.80X

40.00X

35.00X

30.00X No change to code
= . between CPU &
3 GPU!
;’n)zo.oox

15.00X

10.00X

v
5.00X 3.23X

L e — I

SERIAL MULTICORE V100

CU DA U N I FI ED M EM O RY Commonly referred to as

Simplified Developer Effort “managed memory.”

Without Managed Memory With Managed Memory

CPU and GPU memories are
combined into a single, shared pool

Managed Memory

CUDA MANAGED MEMORY

= Handling explicit data transfers between the host and device (CPU and GPU) can be
difficult

= The PGI compiler can utilize CUDA Managed Memory to defer data management

= This allows the developer to concentrate on parallelism and think about data
movement as an optimization

= But, the programmer can usually do better by explicitly managing the data
movement.

$ pgcc -fast -acc -ta=tesla:managed -Minfo=accel main.c

$ pgfortran -fast -acc -ta=tesla:managed -Minfo=accel main.f90

BUILDING THE CODE (W/O MANAGED MEMORY)

$ pgcc -fast -ta=tesla -Minfo=accel laplace2d uvm.c
PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages):
Could not find allocated-variable index for symbol (laplace2d uvm.c: 63)
PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages):
Could not find allocated-variable index for symbol (laplace2d uvm.c: 74)
main:
63, Accelerator kernel generated
Generating Tesla code
63, Generating reduction (max:error)
64, #pragma acc loop gang /* blockIdx.x */
66, #pragma acc loop vector(128) /* threadIdx.x */
64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
66, Loop is parallelizable
74, Accelerator kernel generated
Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector (128) /* threadIdx.x */
75, Accelerator restriction: size of the GPU copy of Anew,A is unknown
77, Loop is parallelizable

* “managed” keyword removed from tesla target, fails to build

OPENACC DATA MANAGEMENT

OPENACC DATA DIRECTIVE

Definition

= The data directive defines a lifetime
for data on the device

= During the region data should be
treated as owned by the accelerator

= Data clauses allow the programmer
to control the allocation and
movement of data

= When memory is shared, regions
may be ignored

#pragma acc data clauses

{

< Sequential and/or Parallel code >

I$acc data clauses
< Sequential and/or Parallel code >

l$acc end data

copy(list)

copyin(list)

copyout(list)

create(list)

DATA CLAUSES

Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
iInput to a subroutine

Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.
Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array

The first number is the start index of the array

In C/C++, the second number is how much data is to be transferred

In Fortran, the second number is the ending index

‘copy(array[starting_index:length]) ‘cm»+

‘copy(array(starting_index:ending_index)) ‘men

OPTIMIZED DATA MOVEMENT
Copy A to/from the

#pragma acc data copy(A[:n*m]) create (Anew[:n*m]) accelerator only when
while (err > tol && iter < iter max) { needed.

err=0.0;

Create temporary space

for(int j = 1; j < n-1; j++) { for Anew
for(int i = 1; i < m-1; i++) {

#pragma acc parallel loop reduction (max:err)

Anew[j][i] = 0.25 * (A[J]1[i+1] + A[j][i-1] +
A[j-1]1[4i] + A[Jj+1]1[i]);

err = max(err, abs(Anew[j][i] - A[Jj]1I[i])):
}
}

#pragma acc parallel loop
for(int jJ =1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {
A[3j]1[i] = Anew[j][i];
}
}
iter++;
}

REBUILD THE CODE

pgcc -fast -ta=tesla -Minfo=accel laplace2d uvm.c
main:
60, Generating copy (A[:m*n]) happens at our data
Generating copyin (Anew]|[:m*n]) region.
64, Accelerator kernel generated
Generating Tesla code
64, Generating reduction (max:error)
65, #pragma acc loop gang /* blockIdx.x */
67, #pragma acc loop vector(128) /* threadIdx.x */
67, Loop is parallelizable
75, Accelerator kernel generated
Generating Tesla code
76, #pragma acc loop gang /* blockIdx.x */
78, #pragma acc loop vector(128) /* threadIdx.x */
78, Loop is parallelizable

Now data movement only

OPENACC SPEED-UP

50.00X

45.00X

40.00X

35.00X

30.00X

25.00X

Speed-Up

20.00X

15.00X

10.00X

5.00X 323X

SERIAL MULTICORE

0.00X

V100 (DATA)

OPENACC CASE STUDIES

OPENACC CASE STUDIES

Real life lessons learned

= Thornado : OpenACC Interoperability with math libraries (Collaboration with Austin
Harris, ORNL)

= E3SM : OpenACC with Unified Memory for Fortran Derived Types (Collaboration
with Matt Norman, ORNL)

THORNADO

THORNADO — NEUTRINO TRANSPORT

= Neutrino transport problem mimicking core-collapse
supernova

= DG-IMEX scheme
= Energy discretization: 32 points with € € [0,300] MeV

= Spatial discretization: 123 points with (x,y, z) € [0,100] 05__?$§
= Deleptonization Wave test 50:4_:222
= Mock initial CCSN profile éo_s
= |nitial neutrino spectrum from Fermi-Dirac distribution 30_2_
1 20 40 60 80 100

Radius [km]

Courtesy of Austin Harris, ORNL

GPU CODE TRANSFORMATION EXAMPLE

Original CPU code
DO i6=1,n5; ...; DO i2=1,n2
I Calculate G(:,i2,i3,i4,i5,i6) 8 DGEMV
DOil1=1,n1
I Calculate V(:,i1,i2,i3,i4,i5,i6)

| Calculate S(:,i1,i2,i3,i4,i5,i6) 8 DGEMV
I Calculate U(:,i1,i2,i3,i4,i5,i6) 12 DGEMV
END DO

END DO; ...; END DO

OpenACC code

I Calculate G 8 DGEMM
I Calculate S 2 DGEMM
ISACC PARALLEL LOOP GANG VECTOR COLLAPSE(7)
DO i6=1,n6; ...; DO i0=1,n0

I Calculate V(i0,i1,i2,i3,i4,i5,i6)
END DO; ...; END DO
I Calculate U 3 DGEMM

Courtesy of Austin Harris, ORNL

OPENACC/CUBLAS INTEROPERABILITY

(DNRM2)

MODULE LinearAlgebraModule
USE DeviceModule

SUBROUTINE VectorNorm2(n, x, incx, xnorm)
REAL(8), DIMENSION(:), POINTER :: px
TYPE(C_PTR) :+ hx, dx
LOGICAL :: data_on_device
data_on_device = .false.
sizeof x =n * c_sizeof(0.0d0)
px(1:n) =>x(1:n)
hx = C_LOC(px)
data_on_device = device_is_present(hx, mydevice, sizeof x)
IF (data_on_device) THEN
#if defined(THORNADO_OACC)
ISACC HOST_DATA USE_DEVICE(px)
#endif
dx = C_LOC(px)
#if defined(THORNADO_OACC)
ISACC END HOST_DATA
#endif
ierr = cublasDnrm2_v2(cublas_handle, n, dx, incx, xnorm)
ELSE
xnorm = DNRM2(n, x, incx)
END IF
END SUBROUTINE

MODULE OpenACCModule

INTEGER(C_INT) FUNCTION acc_is_present(hostptr,bytes) &
BIND(C,NAME="acc_is_present")

USE, INTRINSIC :: iso_c_binding

TYPE(C_PTR), VALUE :: hostptr

INTEGER(C_SIZE_T), VALUE :: bytes

END FUNCTION

MODULE DeviceModule

USE OpenACCModule

LOGICAL FUNCTION device_is_present(hostptr, device, bytes)
TYPE(C_PTR), INTENT(in) :: hostptr

INTEGER, INTENT(in) :: device

INTEGER(C_SIZE_T), INTENT(in) :: bytes

#if defined(THORNADO_OACC)

device_is_present = (acc_is_present(hostptr, bytes) >0)
Helse

device_is_present = .false.

#endif

END FUNCTION

Courtesy of Austin Harris, ORNL

GPU BENCHMARKS

3D Deleptonization Wave (123 Cells)

FP Coupled
107 g . P .
- B Total |3
I Explicit]]
i | |Implicit|]
— 101} I Opacity |+
=
o)
= !
0
g 10
E :
=
=
= 10! i
10_2 1 1
CPU GPU

Courtesy of Austin Harris, ORNL

PROGRAMMING MODEL COMPARISON

Compiler Offload Model Tepy Tepu Speedup
PGI v19.4 OpenACC v2.7 27.8 sec/step 0.42 sec/step 67X
XLv16.1.1 OpenMP v4.5 25.6 sec/step 0.99 sec/step 26X

Courtesy of Austin Harris, ORNL

E3SM

The Energy Exascale Earth System Model (E3SM)

 The U.S. DOE's high-resolution climate model

* Coupling of five components: (1) Atmosphere, (2) Ocean, (3)
Land Surface, (4) Sea Ice, and (5) Land Ice

« Atmospheric model iIs most expensive component
« "Cubed-sphere" non-orthogonal grid

« Spectral Element method (continuous Galerkin, time-
explicit)

« Because of throughput requirements, hi-res climate has very
little work per node to accelerate

Courtesy of Matt Norman, ORNL

The Energy Exascale Earth System Model (E3SM)

1

—

]

b

htp:/iwww-personal.umich.edu/~paullric/A_CubedSphere.png

Courtesy of Matt Norman, ORNL

COMPLEX DATA TYPES

17 type crm_rad_type

18 ! Radiative heating

19 real(crm_rknd), pointer :: qrad(:,:,:,:)

20

21 ! Quantities used by the radiation code. Note that these are strange in that they are
22 ! time-averages, but spatlally resolved.

23 real(crm_rknd), pointer :: temperature(:,:,:,:) ! rad temperature

24 real(crm_rknd), pointer :: qv (:,:,:,:) ! rad vapor

25 real(crm_rknd), pointer :: qc (:,:,:,:) ! rad cloud water

26 real(crm_rknd), pointer :: qi (:,:,:,:) ! rad cloud ice

27 real(crm_rknd), pointer :: cld(:,:,:,:) ! rad cloud fraction

28

29 ! Only relevant when u51ng 2-moment microphysics

30 real(crm_rknd), pointer :: nc(:,:,:,:) ! rad cloud droplet number (#/kg)

31 real(crm_rknd), pointer :: ni(:,:,:,:) ! rad cloud ice crystal number (#/kg)
32 real(crm_rknd), pointer :: gs(:,:,:,:) ! rad cloud snow (kg/kg)

33 real(crm_rknd), pointer :: ns(:,:,:,:) ! rad cloud snow crystal number (#/kg)

34 end type crm_rad_type

Using the managed memory option enabled this GPU port.

USING CUDA PREFETCH HINTS

Interface with CUDA prefetch API to improve performance

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

subroutine memset r8 flat(a,n,v,asyncid)

implicit none

real(8) :: a(n)

real(8) :: v

integer :: n, asyncid, i

#1f defined(OPENACC) && defined (_CUDA)
ISacc host data use_device(a)
ierr = cudaMemsetAsync(a , v , n , acc_get cuda stream(asyncid))
ISacc end host data

#telse
ISacc parallel loop async(asyncid)
do 1=1,n

a(i) = v

enddo

#tendif

end subroutine memset r8 flat

PREFETCH WRAPPERS

Examples of multi-dimension pre-fectch

553 subroutine prefetch r8 3d(a)
554 implicit none
555 real(8) :: a(:,:,:)
203 b ti fetch _r8 flat(a,
204 S%;&kﬂiﬁﬁ;ec—r— S T call prefetch_r8 flat(a,product(shape(a)))
—E el e 2y 557 end subroutine prefetch_r8 3d
206 integer :: n
207 #if defined(OPENACC) && defined (_CUDA)
208 1Sacc host _data use device(a)
209 ierr = cudaMemPrefetchAsync(a , n , acc_get_device_num(acc_device_nvidia) , acc_get_cuda_stream(asyncid_loc+1))
210 1$acc end host _data
211 #endif - -
212 end 4316 subroutine memset r8 3d(a,v,asyncid)
317 implicit none
318 real(8) :: a(:,:,:)
319 real(8) :: v
320 integer :: asyncid
321 call memset r8 flat(a,product(shape(a)),v,asyncid)
322 _end subroutine memset_r8 3d

Performance on OLCF Summit Supercomputer

Runtime for one
model day

Weak: 28km GCM
with 64x64 columns
per CRM

Strong: 28km GCM
with 16x16 columns
per CRM

RUNTIME (S)

Weak

p— Strong

Strong Ideal

64 256 1024 4096
SUMMIT NODES

Courtesy of Matt Norman, ORNL

Performance on OLCF Summit Supercomputer

« Gordon Bell simulations: 3-D 500m global grid spacing at 2

SYPD
« 28km GCM grid spacing, 64x64 CRM columns per GCM column
« Using 4,600 nodes of Summit, we get 2.5% peak flop/s

« 2.5% peak flops on Volta GPU = 33 flops per memory load / store
« About 200 kernels in 30K LOCs using PGI OpenACC

* Current production simulations: 2-D CRM at 500m dx at 3

SYPD

« 3 SYPD with 28km GCM grid spacing and 64x1 columns per CRM
« Using 1,000 Summit nodes, also 2.5% peak flop/s

« About 15x speed-up using 6 Voltas/node versus 2 Power9/node

Courtesy of Matt Norman, ORNL

44

CLOSING

CONCLUSION

OpenACC is a mature, directive-based programming model
that is available for GPUs, multicore CPUs, and more and is
In use by more than 200 scientific applications.

OPENACC RESOURCES

Guides o Talks e Tutorials e Videos e Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

Resources Success Stories
https://www.openacc.org/resources https://www.openacc.org/success-stories
gpenAcc OpenACC

Success Stories

Resources

C materal guides, onli books and more. are snaning e results ang experences.

R Guides & Books

[] Introduction to OpenACC Quick Guides.
+ 0penACC Programming and Best Practices Guide
+ ODONACC 25 API Roterence Card
c

Paraliel Programming with OpenACC

* OpenAcC

B Tutorials

Programming Massivoly Paraliel Procssors, Third
Edition: A Hands-on h

> Watch more OpenACC Videos on YouTube

Compilers and Tools Events
e https://www.openacc.org/tools https://www.openacc.org/events
OpenACC OpenACC

Events

The OpenACC ¢ y orgas

Community Downloads & Tools
EDITION OpenACE complers, prof Al
Commercial Compilers Open Source Compilers

(;F}_A:f PG I él]gmuuimﬁiwm @

around the world

Contact Cray

PGl
OpenACC Directives

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm

