
Shell Sort

Improving on Insertion Sort

Insertion Sort

for (idxToInsert = 1; idxToInsert < v.size ();

++idxToInsert)

{

k = idxToInsert;

elem = v[k];

while (k >= 1 && elem < v[k - 1])

{

v[k] = v[k - 1];

k = k - 1;

}

v[k] = elem;

}

Fast (O(N)) when sequence nearly sorted; otherwise s…l…o…w

One Iteration

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

Sorted Element to place

3 4 7 55 9 23 28 16

10

elem

3833212014141210

Sorted

Not > 10

How to Improve?

 Each time we insert an element other elements get nudged

one step closer to where they ought to be

 What if we move elements a much longer distance each time?

 Move each element long distances initially, and decrease that

distance to 1 eventually

 This leads to Shell sort

Sorting Subsequences

 Insertion sort red elements

 Insertion sort yellow elements …

 … and finally purple elements

 Resultant array is sorted?

• Vector to be sorted

Elements Compared

0, 5, 10, 15, 20

1, 6, 11, 16, 21

2, 7, 12, 17, 22

3, 8, 13, 18, 23

4, 9, 14, 19

h-Sorting

 We sorted 5 sequences of elements spaced 5 apart – a

(single) h-sort with h=5

 Insertion sort is a 1-sort

 What if we follow the 5-sort with a 1-sort?

 Expect each insertion would involve moving fewer elements

 Resulting vector would be sorted

Values of ‘h’

 For large vectors we don’t want to start with a 5-sort

 Start with h = f (v.size ())

 Reduce h to 1

 Values of h form increment or decrement sequence

Values of ‘h’

 Hibbard suggests < 1, 3, 7, …, 2k – 1 >

 To find initial ‘h’:
for (h = 1; h <= N / 4; h = h * 2 + 1)

/* empty */;

 Repeat while h > 0
 Do h-sort

 h = h / 2

 Worst case O(N1.5)

Increment Sequences

 Performance sensitive to increment/decrement sequence

 Optimal sequence not known

 Shell proposed decrement seq. < 1, 2, 4, 8, … >
 Good?

 One from Donald Knuth: < 1, 4, 13, … >
 Decrement by dividing by 3

 Many others…

 So what does the code for h-sorting look like?

https://en.wikipedia.org/wiki/Shellsort#Gap_sequences

Analysis

 You cut the size of the array, N, by some fixed amount
(N = N / k)

 Consequently, you have about log N stages

 Each stage takes O(N) time

 Hence, the algorithm takes O(N log N) time

 Right?

Analysis
 Wrong!

 This analysis assumes that each stage actually moves elements closer
to where they ought to be, by a fairly large amount

 What if all the red cells, for instance, contain the largest numbers
in the array?

 In fact, if we just cut the size in half each time, sometimes we get
O(N2) behavior!

Analysis

 What is the real complexity?

 Depends on sequence

 Sometimes unknown

 Some complexities determined empirically

