
Shell Sort

Improving on Insertion Sort



Insertion Sort

for (idxToInsert = 1; idxToInsert < v.size (); 

++idxToInsert) 

{

k = idxToInsert;

elem = v[k];

while (k >= 1 && elem < v[k - 1])

{

v[k] = v[k - 1];

k = k - 1;

}

v[k] = elem;

}

Fast (O(N)) when sequence nearly sorted; otherwise s…l…o…w



One Iteration

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

Sorted Element to place

3 4 7 55 9 23 28 16

10

elem

3833212014141210

Sorted

Not > 10



How to Improve?

 Each time we insert an element other elements get nudged 

one step closer to where they ought to be

 What if we move elements a much longer distance each time?

 Move each element long distances initially, and decrease that 

distance to 1 eventually

 This leads to Shell sort



Sorting Subsequences

 Insertion sort red elements

 Insertion sort yellow elements …

 … and finally purple elements

 Resultant array is sorted?

•   Vector to be sorted

Elements Compared

0, 5, 10, 15, 20

1, 6, 11, 16, 21

2, 7, 12, 17, 22

3, 8, 13, 18, 23

4, 9, 14, 19



h-Sorting

 We sorted 5 sequences of elements spaced 5 apart – a 

(single) h-sort with h=5

 Insertion sort is a 1-sort

 What if we follow the 5-sort with a 1-sort?

 Expect each insertion would involve moving fewer elements

 Resulting vector would be sorted



Values of ‘h’

 For large vectors we don’t want to start with a 5-sort

 Start with h = f (v.size ())

 Reduce h to 1

 Values of h form increment or decrement sequence



Values of ‘h’

 Hibbard suggests < 1, 3, 7, …, 2k – 1 >

 To find initial ‘h’: 
for (h = 1; h <= N / 4; h = h * 2 + 1) 

/* empty */;

 Repeat while h > 0
 Do h-sort

 h = h / 2

 Worst case O(N1.5)



Increment Sequences

 Performance sensitive to increment/decrement sequence

 Optimal sequence not known

 Shell proposed decrement seq. < 1, 2, 4, 8, … >
 Good?

 One from Donald Knuth: < 1, 4, 13, … >
 Decrement by dividing by 3

 Many others…

 So what does the code for h-sorting look like?

https://en.wikipedia.org/wiki/Shellsort#Gap_sequences


Analysis

 You cut the size of the array, N, by some fixed amount 
(N = N / k)

 Consequently, you have about log N stages

 Each stage takes O(N) time

 Hence, the algorithm takes O(N log N) time

 Right?



Analysis
 Wrong! 

 This analysis assumes that each stage actually moves elements closer 
to where they ought to be, by a fairly large amount

 What if all the red cells, for instance, contain the largest numbers 
in the array?

 In fact, if we just cut the size in half each time, sometimes we get
O(N2) behavior!



Analysis

 What is the real complexity?

 Depends on sequence

 Sometimes unknown

 Some complexities determined empirically 


