
Unit Testing
Software Engineering
Millersville University



Process

• For each piece of ”production" code (e.g. a class or a method):
• Pair the code with some "unit test" code
• Only access the public API
• Call it a few different ways
• Check the results

• Test code does not need to be exhaustive
• test code adds a lot of value even just hitting a few fairly obvious cases. 

• Unit Tests are an investment
• effort to build
• Standard, maintained way to keep tests in parallel with production code
• improve development for the lifetime of the code



High Quality Code

• We think about building lots of different types of code
• Throw-away code
• Minimum working example
• Proof of Concept
• Production code

• Code was built to an intuitive "it appears to work" quality level
• With unit tests, we can build code to a much higher quality level
• We have the tests
• Infrastructure can run the tests constantly
• Each component is tested independently of one another



Workflow

• For every class (Wingding), create a test class (WingdingTest)
• For every public function (foo), create a test function (testFoo)

• Write the test code first
• Write the production code and debug it until the tests pass
• Every feature has corresponding unit test code.



Unit Test Types

• Basic
• Cases with small to medium sized inputs
• So simple they should obviously work.
• Should not be hard to think of 

• Advanced
• harder, more complex cases.
• Some of these, you only think of later as you get deeper into the algorithm.
• This is the category that tends to grow over time as you get more insight 

about the problem and observe more weird cases. 
• Edge
• there are also cases that are simple but represent edge conditions
• the empty string
• the empty list



Call Every Method A Few Times Differently 

• If a class has foo() and bar() methods
• The test code should call each of those a few different ways

• Don’t just call foo() 5 times
• Focus on where the calls are very similar

• When testing a equals(x, y) method
• Don't only give x,y where equals() should return true
• Call it once or twice where it should return false too!

• If someone has changed the method body to something like return 
false; the unit tests should at least be able to notice that.



Unit Tests vs. API Design 

• API design
• a class presents a nice interface for use by others -- is vital part of OOP design. 

• API design is hard
• it's difficult for the class designer to understand the class
• Difficult to understand its API the way they will appear to clients. 

• Unit tests have the designer literally act like a client
• Using the class in a realistic way using only its public API.
• Unit tests help the designer to see if the public API is awkward for expressing 

common cases.
• By writing tests first, this insight about the API appears very early in the life of 

the class when it's easy to change or tune. 



Unit Test Boundary Fun

• Change an important < in the work code to a <= to observe the unit 
test fail
• it really is bearing down on that case, then change it back to <.
• In this way you see that the unit test boundary really is where you think it is. 

• Change a comment or something else not scary in the code.
• If you're bored, run the tests again, just to see the green. 


