
Software Development 
Processes:
Rapid Prototyping
Software Engineering
Millersville University



The Flip Side: Advantages to Being Fast

• In the short-term, we can assume the world will not change
• At least not much

• Being fast greatly simplifies planning
• Near-term predictions are much more reliable

• Unfortunately, the waterfall model does not lend itself to speed . . .



Something Faster: Rapid Prototyping

Write a quick 
prototype

1
Show it to users
• Use to refine 

requirements

2
Then proceed as in 
waterfall model
• Throw away the prototype
• Do spec, design, coding, 

integration, etc.

3



Comments on Rapid Prototyping

• Hard to throw away the prototype
• Slogan “the prototype is the product”
• Happens more often than you might think!

• A prototype is useful in refining requirements
• Much more realistic to show users a system rather than specification 

documents

• A prototype exposes design mistakes
• Experience building a prototype will improve greatly the accuracy of 

plans 



Opinions on Reality

• Neither of these models is true to life
• In reality, feedback between all stages
• Specifications will demand refined requirements 
• Design can affect the specification
• Coding problems can affect the design
• Final product may lead to changes in requirements

• I.e., the initial requirements weren’t right!

• Waterfall model with “feedback loops”



What to Do?

• Accept that later stages may force changes in earlier decisions

• And plan for it

• The key: Minimize the risk
• Recognize which decisions may need to be revised
• Plan to get confirmation/refutation as soon as possible



Iterative Models: Plan for Change

• Use the same stages as the waterfall model

• But plan to iterate the whole cycle several times
• Each cycle is a “build”
• Smaller, lighter-weight than entire product

• Break the project into a series of builds which lead from a skeletal 
prototype to a finished product



Gather Requirements

• Same idea as before

• Talk to users, find out what is 
needed

• But recognize diminishing returns

• Without something to show, 
probably can’t get full picture of 
requirements on the first iteration



Specification
• A written description of what the 

system does
• In all circumstances

• For all inputs
• In each possible state

• Still need this
• Worth significant time

• Recognize it will evolve
• Be aware of what aspects are under-

specified



Design
• Decompose system into modules and 

specify interfaces

• Design for change
• Which parts are most likely to change? 

• Put abstraction there



Design
• Decompose system into modules and 

specify interfaces

• Which parts are most likely to change? 
• Put abstraction there



Design
• Plan incremental development of each 

module

• From skeletal component to full 
functionality

• From most critical to least critical 
features



Implementation: Build 1
• Get a skeletal system working

• All the pieces are there, but none of 
them do very much

• But the interfaces are implemented

• This allows
• A complete system to be built
• Development of individual components 

to rely on all interfaces of other 
components



Implementation: Subsequent Builds
• After build 1, always have a demo to 

show
• To customers
• To the team
• Communication!

• Each build adds more functionality



Integration
• Integration and major test for each build

• Stabilization point

• Continues until last build
• But may begin shipping earlier builds



Advantages

• Get early feedback from users
• Get early feedback on whether spec/design are feasible

Find problems sooner

• When build 3 of 4 is done, product is 75% complete
• What percentage have we completed at the implementation 

stage of the waterfall model?

More quantifiable than waterfall



Disadvantages

• In requirements, specification, or design
• Because we don’t invest as much time before build 1
• Begin coding before problem is fully understood

Making a major Mistake

• Often better to get something working and get feedback on that 
rather than study problem in the abstract

Trade-off against being slow



In Practice

• Most consumer software development uses the iterative model
• Daily builds
• System is always working
• Microsoft is a well-known example
• IBM Rational Unified Process

• Many systems that are hard to test use something more like a 
waterfall model
• E.g., unmanned space probes



Summary

• Important to follow a good process
• Waterfall
• top-down design, bottom-up implementation
• Lots of upfront thinking, but slow, hard to iterate

• Iterative, or evolutionary processes
• Build a prototype quickly, then evolve it
• Postpone some of the thinking

• Extreme programming, Agile process, next …


