Software Development

Processes:
Waterfall Model

Software Engineering
Millersville University

Waterfall Process Phases

Testing

1. Gather Requirements

* Figure out what this thing is
supposed to do
* Araw list of features
* Written down . ..

e Usually a good idea to talk to users,
clients, or customers!

e But note, they don’t always know
what they want
* Purpose:

* Make sure we don’t build the wrong
thing
e Gather information for planning

2. Specification

* A written description of what the
system does
* In all circumstances
* Forall inputs
* |In each possible state

e A written document

* Because it covers all situations, much
more comprehensive than requirements

3. Design

The system architecture

Decompose system into modules

Specify interfaces between modules

Much more of how the system works,
rather than what it does

3. Design

The system architecture

Decompose system in modules

Specify interfaces between modules

Much more of how the system works,
rather than what it does

4. Implementation

e Code up the design

* First, make a plan
* The order in which things will be done
e Usually by priority
* Also for testability

 Test each module

5. Integration

e Put the pieces together

* A major QA effort at this point to test
the entire system

5. Integration

e Put the pieces together

* A major QA effort at this point to test
the entire system

6. Product

* Ship and be happy

e Actually, start maintenance

A Software Process: Waterfall Model

* One of the standard models for developing software

* Each stage leads on to the next
* No iteration or feedback between stages

The Waterfall Model

Specification -

—

Testing

—

v

"

The Waterfall Model (Cont.)

* There is testing after each phase
* Verify the requirements, the spec, the design
* Not just the coding and the integration

* Note the top-down design
* Requirements, spec, design

* Bottom-up implementation
* Implement, integrate subparts, integrate product

The Waterfall Model (Discussion)

* What are the risks with the waterfall model?

Opinions

* The major risks are:

Relies heavily on being able to accurately assess requirements at the
start

Little feedback from users until very late

* Unless they understand specification documents
Problems in the specification may be found very late

e Coding or integration
Whole process can take a long time before the first working version is
seen

* Frequent intermediate builds are needed to build confidence for a team
Sequential

* The programmers have nothing to do until the design is ready

Opinions

* The waterfall model seems to be adopted from other fields of engineering
e This is how to build bridges

* | believe very little software is truly built using the waterfall process
* Where is it most, least applicable?

* But many good aspects
* Emphasis on spec, design, testing
* Emphasis on communication through documents

An Opinion on Time

* Time is the enemy of all software projects

* Taking a long time is inherently risky

“It is hard to make predictions,
especially about the future”

Why Time is Important?

* The world changes, sometimes quickly

* Technologies become obsolete
* Many products obsolete before they first ship!

* Other people produce competitive software

 Software usually depends on many 39-party pieces
* Compilers, networking libraries, operating systems, etc.
* All of these are in constant motion
* Moving slowly means spending lots of energy keeping up with these changes

A Case Study

 California DMV software (‘87-93)

* Attempt to merge driver & vehicle registration systems
* thought to take 6 years and $8 million

* Spent 7 years and S50 million before pulling the plug
e costs 6.5x initial estimate & expected delivery slipped to 1998 (or 11 years)!

