
Software Development
Processes:
Waterfall Model
Software Engineering
Millersville University

Waterfall Process Phases

Gather Requirements

Specification

Design

Implementation

Integration

Product

Testing

1. Gather Requirements

• Figure out what this thing is
supposed to do
• A raw list of features
• Written down . . .

• Usually a good idea to talk to users,
clients, or customers!
• But note, they don’t always know

what they want
• Purpose:

• Make sure we don’t build the wrong
thing

• Gather information for planning

2. Specification
• A written description of what the

system does
• In all circumstances

• For all inputs
• In each possible state

• A written document

• Because it covers all situations, much
more comprehensive than requirements

3. Design
• The system architecture

• Decompose system into modules

• Specify interfaces between modules

• Much more of how the system works,
rather than what it does

3. Design
• The system architecture

• Decompose system in modules

• Specify interfaces between modules

• Much more of how the system works,
rather than what it does

4. Implementation
• Code up the design

• First, make a plan
• The order in which things will be done
• Usually by priority
• Also for testability

• Test each module

5. Integration
• Put the pieces together

• A major QA effort at this point to test
the entire system

5. Integration
• Put the pieces together

• A major QA effort at this point to test
the entire system

6. Product

• Ship and be happy

• Actually, start maintenance

A Software Process: Waterfall Model

• One of the standard models for developing software

• Each stage leads on to the next
• No iteration or feedback between stages

The Waterfall Model

Gather Requirements

Specification

Design

Implementation

Integration

Product

Testing

The Waterfall Model (Cont.)

• There is testing after each phase
• Verify the requirements, the spec, the design
• Not just the coding and the integration

• Note the top-down design
• Requirements, spec, design

• Bottom-up implementation
• Implement, integrate subparts, integrate product

The Waterfall Model (Discussion)

• What are the risks with the waterfall model?

Opinions
• The major risks are:

• Relies heavily on being able to accurately assess requirements at the
start

• Little feedback from users until very late
• Unless they understand specification documents

• Problems in the specification may be found very late
• Coding or integration

• Whole process can take a long time before the first working version is
seen
• Frequent intermediate builds are needed to build confidence for a team

• Sequential
• The programmers have nothing to do until the design is ready

Opinions

• The waterfall model seems to be adopted from other fields of engineering
• This is how to build bridges

• I believe very little software is truly built using the waterfall process
• Where is it most, least applicable?

• But many good aspects
• Emphasis on spec, design, testing
• Emphasis on communication through documents

An Opinion on Time

• Time is the enemy of all software projects

• Taking a long time is inherently risky

“It is hard to make predictions,
especially about the future”

Why Time is Important?

• The world changes, sometimes quickly

• Technologies become obsolete
• Many products obsolete before they first ship!

• Other people produce competitive software

• Software usually depends on many 3rd-party pieces
• Compilers, networking libraries, operating systems, etc.
• All of these are in constant motion
• Moving slowly means spending lots of energy keeping up with these changes

A Case Study

• California DMV software (‘87-’93)

• Attempt to merge driver & vehicle registration systems
• thought to take 6 years and $8 million

• Spent 7 years and $50 million before pulling the plug
• costs 6.5x initial estimate & expected delivery slipped to 1998 (or 11 years)!

