
Design Patterns
CSCI 420: Software Engineering

Overview

• A design pattern is a general repeatable solution to
a commonly occurring problem in software design.

• Isn't a finished design that can be transformed
directly into code.

• Is a description or template for how to solve a
problem that can be used in many different
situations.

Aside: Criticisms

• Targets the wrong problem
Peter Norvig demonstrated that 16 out of the 23 patterns in the
Design Patterns book are simplified/eliminated in Lisp

• Lacks formal foundations
At OOPSLA 1999, the Gang of Four were, with their full
cooperation, subjected to a show trial, in which they were
"charged" with numerous crimes against computer science.
They were "convicted" by ⅔ of the "jurors" who attended the
trial.

• Leads to inefficient solutions
https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

• Does not differ significantly from other abstractions

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

Categories

• Creational Design Patterns
• These design patterns are all about class instantiation
• Composed of class-creation (inheritance) and object-

creational (delegation)
• Structural Design Patterns
• These design patterns are all about Class and Object

composition.
• Structural class-creation patterns use inheritance to

compose interfaces.
• Behavioral Design Patterns
• All about Class's objects communication.

Creational Patterns

• Abstract Factory *
Creates an instance of several families of classes

• Builder *
Separates object construction from its representation

• Factory Method
Creates an instance of several derived classes

• Object Pool
Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use

• Prototype
A fully initialized instance to be copied or cloned

• Singleton *
A class of which only a single instance can exist

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton

Structural Patterns (1/2)

• Adapter *
Match interfaces of different classes

• Bridge
Separates an object's interface from its implementation

• Composite
A tree structure of simple and composite objects

• Decorator * (Python)
Add responsibilities to objects dynamically

https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/bridge
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/decorator

Structural Patterns (2/2)

• Flyweight
A fine-grained instance used for efficient sharing

• Facade
A single class that represents an entire subsystem

• Private Class Data
Restricts accessor/mutator access

• Proxy
An object representing another object

https://sourcemaking.com/design_patterns/flyweight
https://sourcemaking.com/design_patterns/facade
https://sourcemaking.com/design_patterns/private_class_data
https://sourcemaking.com/design_patterns/proxy

Behavioral Patterns (1/2)

• Chain of responsibility
A way of passing a request between a chain of objects

• Command *
Encapsulate a command request as an object

• Interpreter
A way to include language elements in a program

• Iterator *
Sequentially access the elements of a collection

• Mediator
Defines simplified communication between classes

• Memento *
Capture and restore an object's internal state

https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/interpreter
https://sourcemaking.com/design_patterns/iterator
https://sourcemaking.com/design_patterns/mediator
https://sourcemaking.com/design_patterns/memento

Behavioral Patterns (2/2)

• Null Object
Designed to act as a default value of an object

• Observer *
A way of notifying change to a number of classes

• State *
Alter an object's behavior when its state changes

• Strategy *
Encapsulates an algorithm inside a class

• Template method
Defer the exact steps of an algorithm to a subclass

• Visitor *
Defines a new operation to a class without change

https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/observer
https://sourcemaking.com/design_patterns/state
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/visitor

Examples of When to Apply

Functional Decomposition (bad) Object-Oriented Programming (good)

Abstract Factory*

Intent
• Provide an interface for creating families of related

or dependent objects without specifying their
concrete classes.
• A hierarchy that encapsulates: many possible

"platforms", and the construction of a suite of
"products".
• The new operator considered harmful.

Abstract Factory

Abstract Factory

Builder*

Intent
• Separate the construction of a complex object from its

representation so that the same construction process
can create different representations.
• Parse a complex representation, create one of several

targets.
Problem
• An application needs to create the elements of a

complex aggregate. The specification for the aggregate
exists on secondary storage and one of many
representations needs to be built in primary storage.

Builder*

Builder

Factory Method

Intent
• Define an interface for creating an object, but let

subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.
• Defining a "virtual" constructor.
• The new operator considered harmful.
Problem
• A framework needs to standardize the architectural

model for a range of applications but allow for
individual applications to define their own domain
objects and provide for their instantiation.

Factory Method

Factory Method (static member)

Factory Method

Factory Method

Object Pool

Intent
• Object pooling can offer a significant performance boost
• it is most effective in situations where:

• the cost of initializing a class instance is high
• the rate of instantiation of a class is high
• the number of instantiations in use at any one time is low.

Problem
• It is desirable to keep all Reusable objects that are not

currently in use in the same object pool so that they can be
managed by one coherent policy.
• To achieve this, the Reusable Pool class is designed to be a

singleton class.

Object Pool

Object Pool

Prototype

Intent
• Specify the kinds of objects to create using a

prototypical instance and create new objects by
copying this prototype.
• Co-opt one instance of a class for use as a breeder

of all future instances.
• The new operator considered harmful.
Problem
• Application "hard wires" the class of object to

create in each "new" expression.

Prototype

Prototype

Singleton*

Intent
• Ensure a class has only one instance and provide a

global point of access to it.
• Encapsulated "just-in-time initialization" or

"initialization on first use".
Problem
• Application needs one, and only one, instance of an

object. Additionally, lazy initialization and global
access are necessary.

Singleton*

Singleton

Adapter*

Intent
• Convert the interface of a class into another interface

clients expect. Adapter lets classes work together that
couldn't otherwise because of incompatible interfaces.
• Wrap an existing class with a new interface.
• Impedance match an old component to a new system
Problem
An "off the shelf" component offers compelling
functionality that you would like to reuse, but its "view of
the world" is not compatible with the philosophy and
architecture of the system currently being developed.

Adapter*

Adapter

Bridge

Intent
• Decouple an abstraction from its implementation so that

the two can vary independently.
• Publish interface in an inheritance hierarchy, and bury

implementation in its own inheritance hierarchy.
• Beyond encapsulation, to insulation
Problem
• "Hardening of the software arteries" has occurred by using

subclassing of an abstract base class to provide alternative
implementations. This locks in compile-time binding
between interface and implementation. The abstraction and
implementation cannot be independently extended or
composed.

Bridge

Before After

Bridge

Bridge

Composite

Intent
• Compose objects into tree structures. Composite lets

clients treat individual objects and compositions of
objects uniformly.
• Recursive composition
• "Directories contain entries, each of which could be a

directory."
• 1-to-many "has a" up the "is a" hierarchy
Problem
• Application needs to manipulate a hierarchical collection of

"primitive" and "composite" objects. Processing of a
primitive object is handled one way, and processing of a
composite object is handled differently. Having to query the
"type" of each object before attempting to process it is not
desirable.

Composite

Composite

Decorator*

Intent
• Attach additional responsibilities to an object

dynamically. Decorators provide a flexible alternative to
subclassing for extending functionality.
• Client-specified embellishment of a core object by

recursively wrapping it.
• Wrapping a gift, putting it in a box, and wrapping the

box.
Problem
• You want to add behavior or state to individual objects

at run-time. Inheritance is not feasible because it is
static and applies to an entire class.

Decorator -- Problem

Decorator

Decorator

Facade

Intent
• Provide a unified interface to a set of interfaces in a

subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.
• Wrap a complicated subsystem with a simpler

interface.
Problem
• A segment of the client community needs a

simplified interface to the overall functionality of a
complex subsystem.

Facade

Facade

Facade

Flyweight

Intent
• Use sharing to support large numbers of fine-

grained objects efficiently.
• The Motif GUI strategy of replacing heavy-weight

widgets with light-weight gadgets.
Problem
• Designing objects down to the lowest levels of

system "granularity" provides optimal flexibility, but
can be unacceptably expensive in terms of
performance and memory usage.

Flyweight

Flyweight

Private Class Data

Intent
• Control write access to class attributes
• Separate data from methods that use it
• Encapsulate class data initialization
• Providing new type of final - final after constructor
Problem
• The motivation for this design pattern comes from

the design goal of protecting class state by
minimizing the visibility of its attributes (data)

Private Class Data

Proxy Design Pattern

Intent
• Provide a surrogate or placeholder for another object

to control access to it.
• Use an extra level of indirection to support distributed,

controlled, or intelligent access.
• Add a wrapper and delegation to protect the real

component from undue complexity.
Problem
• You need to support resource-hungry objects, and you

do not want to instantiate such objects unless and until
they are actually requested by the client.

Proxy Design Pattern

Proxy Design Pattern

Behavioral patterns
Design Patterns that identify common communication
patterns between objects and realize these patterns.
These patterns increase flexibility in carrying out this
communication.

Command*

Intent
• Encapsulate a request as an object, thereby letting you

parametrize clients with different requests, queue or
log requests, and support undoable operations.
• Promote "invocation of a method on an object" to full

object status
• An object-oriented callback

Problem
• Need to issue requests to objects without knowing

anything about the operation being requested or the
receiver of the request.

Command*

Command*

Command*

1. Define a Command interface with a method signature
like execute().

2. Create one or more derived classes that encapsulate
some subset of the following: a "receiver" object, the
method to invoke, the arguments to pass.

3. Instantiate a Command object for each deferred
execution request.

4. Pass the Command object from the creator (aka
sender) to the invoker (aka receiver).

5. The invoker decides when to execute().

Iterator*

Intent
• Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.
• The C++ and Java standard library abstraction that makes it

possible to decouple collection classes and algorithms.
• Promote to "full object status" the traversal of a collection.
• Polymorphic traversal

Problem
• Need to "abstract" the traversal of wildly different data

structures so that algorithms can be defined that are
capable of interfacing with each transparently.

Iterator*

Iterator*

Memento*

Intent
• Without violating encapsulation, capture and

externalize an object's internal state so that the object
can be returned to this state later.
• A magic cookie that encapsulates a "check point"

capability.
• Promote undo or rollback to full object status.

Problem
• Need to restore an object back to its previous state

(e.g. "undo" or "rollback" operations).

Memento*

Memento*

Null Object

Intent
• The intent of a Null Object is to encapsulate the

absence of an object by providing a substitutable
alternative that offers suitable default do nothing
behavior. In short, a design where "nothing will come of
nothing”

• Use the Null Object pattern when
• an object requires a collaborator. The Null Object pattern

does not introduce this collaboration--it makes use of a
collaboration that already exists

• some collaborator instances should do nothing
• you want to abstract the handling of null away from the client

Null Object

The key to the Null Object
pattern is an abstract class
that defines the interface
for all objects of this type.
The Null Object is
implemented as a subclass
of this abstract class.

Null Object

Observer*

Intent
• Define a one-to-many dependency between objects so that

when one object changes state, all its dependents are
notified and updated automatically.
• Encapsulate the core (or common or engine) components in

a Subject abstraction, and the variable (or optional or user
interface) components in an Observer hierarchy.
• The "View" part of Model-View-Controller.

Problem
• A large monolithic design does not scale well as new

graphing or monitoring requirements are levied.

Observer*

Observer*

Observer*

Check list
1. Differentiate between the core (or independent) functionality and the

optional (or dependent) functionality.
2. Model the independent functionality with a "subject" abstraction.
3. Model the dependent functionality with an "observer" hierarchy.
4. The Subject is coupled only to the Observer base class.
5. The client configures the number and type of Observers.
6. Observers register themselves with the Subject.
7. The Subject broadcasts events to all registered Observers.
8. The Subject may "push" information at the Observers, or, the

Observers may "pull" the information they need from the Subject.

State

Intent
• Allow an object to alter its behavior when its internal state

changes. The object will appear to change its class.
• An object-oriented state machine
• wrapper + polymorphic wrappee + collaboration
Problem
• A monolithic object's behavior is a function of its state, and

it must change its behavior at run-time depending on that
state. Or, an application is characterized by large and
numerous case statements that vector flow of control based
on the state of the application.

Models a state machine of sorts

State

The State pattern is a solution to the problem of how to
make behavior depend on state.
• Define a "context" class to present a single interface to the

outside world.
• Define a State abstract base class.
• Represent the different "states" of the state machine as

derived classes of the State base class.
• Define state-specific behavior in the appropriate State

derived classes.
• Maintain a pointer to the current "state" in the "context"

class.
• To change the state of the state machine, change the

current "state" pointer.

State

State • Vending machines have states based on the
inventory, amount of currency deposited,
the ability to make change, the item
selected, etc.
• When currency is deposited and a selection

is made, a vending machine will either:
• deliver a product and no change
• deliver a product and change
• deliver no product due to insufficient currency

on deposit
• deliver no product due to inventory depletion.

Strategy*

Intent
• Define a family of algorithms, encapsulate each

one, and make them interchangeable. Strategy lets
the algorithm vary independently from the clients
that use it.
• Capture the abstraction in an interface, bury

implementation details in derived classes.
Problem
• One of the dominant strategies of object-oriented

design is the "open-closed principle".

Strategy*

Strategy*

Strategy*

Strategy*

Check list
1. Identify an algorithm (i.e. a behavior) that the

client would prefer to access through a "flex
point".

2. Specify the signature for that algorithm in an
interface.

3. Bury the alternative implementation details in
derived classes.

4. Clients of the algorithm couple themselves to the
interface.

Template Method*

Intent
• Define the skeleton of an algorithm in an operation,

deferring some steps to client subclasses. Template
Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm's structure.
• Base class declares algorithm 'placeholders', and

derived classes implement the placeholders.
Problem
• Two different components have significant similarities,

but demonstrate no reuse of common interface or
implementation. If a change common to both
components becomes necessary, duplicate effort must
be expended.

Template Method*

Template Method*

Template
Method*

Visitor*

Intent
• Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

• The classic technique for recovering lost type information.
• Do the right thing based on the type of two objects.
• Double dispatch

Problem
• Many distinct and unrelated operations need to be performed on node

objects in a heterogeneous aggregate structure.
• You want to avoid "polluting" the node classes with these operations
• You don't want to have to query the type of each node and cast the

pointer to the correct type before performing the desired operation.

Visitor* (Structure)

Visitor* (Structure)

IMPORTANT DESIGN PATTERNS
Abstract Factory (creation) **

Builder (chained creation)

Singleton (single resource) **

Adapter (making other things work) **

Command (Able to defer dispatch)

Iterator (Traverse through items)

Memento (Preserving State – ties with “Command”)

Observer (notified by state changes, View) **

State (modify behavior, model state machine)

Strategy (family of algorithms; runs one) **

Visitor (add new functionality without changing) **

