
Continuous Integration
CSCI 420: Software Engineering

Millersville University

Outline

• Definition
• Workflows
• Locally Test
• Remotely Build
• Remotely Test
• Remotely Deploy

• Steps to Success
• CI Services

Continuous Integration

The practice of merging all developers' working
copies to a shared mainline several times a day

• Originated from “Object-Oriented Design: With
Applications” by Grady Booch in 1991

• Extreme Programming (XP) adopted Continuous
Integration as we know it today (late 1990s)

Continuous Integration: the Journey

Remotely Build

Remotely Test

Remotely Deploy Locally Test

• Build and run tests on their own device
• Commit code to central repository
• Review other developers’ pull requests,

trusting the code works
• Manual inspection of code
• Manual inspection of tests
• Still could be bugs

Locally Test

Continuous Integration: the Journey

Remotely Build

Remotely Test

Remotely Deploy Remotely Build

• Build and run tests on their own device
• When code is committed to central

repository, automatically build the
project.
• If errors are reported, then the

code cannot be merged
• Review other developers’ pull requests,

trusting the code works
• Manual inspection of code
• Manual inspection of tests
• Still could be bugs

Locally Test

Continuous Integration: the Journey

Locally Test

Remotely Build

Remotely Test

Remotely Deploy Remotely Test

• Build and run tests on their own device
• When code is committed to central

repository, automatically build the
project.
• If errors are reported, then the

code cannot be merged
• If no errors are reported, then

automatically run all the tests
• If errors are reported, then

the code cannot be merged
• Review other developers’ pull requests

• Still could be bugs

Continuous Integration

Server
Git Repository

Developer Machine
Agile Process

Server
Continuous Integration Server

1. Commit to branch

2. Trigger CI

3. Clone repository

4. Checkout branch

5. Build project

6. Run tests

7. Deploy artifact(s)

git clone ...

git checkout ...

gradle build ...
cmake –build ...
npm run build ...

gradle test ...
ctest ...
npm test ...

Check(s) fail
prevent merging

Checks pass
allow merging

Steps to Success

1. Maintain a Code Repository
• Github, Gitlab, Bitbucket, etc. are all services which have

a code repository and project management features

• Developers commit the repository on feature branches

• Feature branches are reviews and merged into the
working project

• Every N weeks, a new version of the project is released

Steps to Success

2. Automate the Build

• Manually compiling or relying on an IDE to build for you
(e.g. Eclipse) is not acceptable

• Adopt a build system/framework
e.g. maven, gradle, cmake, npm, pybuilder

• Enables a single command to be invoked for project
build. Fewer steps -> Lower Likelihood of Errors

Steps to Success

3. Make the Code Self-Testing

• This requires the creation of tests

• Adopt a testing framework
e.g. JUnit, GTest/GMock, Mocha, pytest

• Run a single command to test everything
gradle test # Java + JUnit w/ Gradle
ctest # C/C++/FORTRAN w/ CMake
pytest # Python

Steps to Success

4. Create a Test Environment
Reproducible server/configuration that can:
• Download your repository
• Build the project
• Run all the project’s tests

Often done through the usage/creation of Containers

Containers are like an operating system + software stack…
• Runs on “the cloud” (someone else’s computer)
• Contains only the software that you want
• Is completely reproducible

Steps to Success

5. Keep the Builds Fast

• Minimize Latency
• Lowest end-to-end time

• Maximize Throughput
• Multiple builds concurrently(?)

© Pixar/DisneyI am speed.

Steps to Success

6. Trigger Builds from Commits
• Often referred to as hooks or actions
• Code repositories can interact with CI Services
• Examples: Travis CI, Circle CI, Github Actions

Steps to Success

7. Force Checks to Pass before Merging
• Add a step to your workflow which requires your code to

build and have all checks passing prior to merging

• Checks to Include:
• Project Builds
• Project Tests Pass
• Project Code Coverage doesn’t Decrease
• Style/Linting checks

Continuous Integration Services

Travis CI
.travis.yml config file

Example Output:

Continuous Integration Services

GitHub Actions

.github/workflows/*.yml config file(s)

Example Output:

Augmenting Pull Request Checks

Required for Sprint 3

• Continuous Integration for your Project
• Can use GitHub Actions or Travis CI
• Must Build Project
• Must Run Project tests
• Schedule a meeting with Project Manager to change

requirements for merge workflow with Pull Requests

• Code Coverage Reporting
• Talk more about this next week
• Recommended (Required for Sprint 4)
• Helps identify what code is being run/tested

