
API Design
CSCI 420: Software Engineering
Millersville University



API
• Application Programming Interface

• Source Code Interface
• For Library or Operating System
• Provides services to a Program

• At its base, comparable to a header file
• But, much more complete



Why is API Design 
Important?
• Company View
• Can be asset – big user investment in learning and using
• Bad design can be source of long-term support problems

• Once used, it’s tough to change
• Especially if there are several users

• Public APIs – One chance to get it right



Characteristics of 
Good APIs
• Easy to learn
• Easy to use even without documentation
• Hard to misuse
• Easy to read and maintain code that uses it
• Sufficiently powerful to satisfy requirements
• Easy to extend
• Appropriate to audience



Designing an API
• Gather requirements
• Don’t gather solutions
• Extract true requirements
• Collect specific scenarios where it will be used

• Create short specification
• Consult with users to see whether it works
• Flesh it out over time

• Hints:
• Write plugins/use examples before fully designed and 

implemented
• Expect it to evolve



Broad Issues to 
Consider in Design

1. Interface Principles
• The classes, methods, parameters, names

2. Resource Management
• How is memory, other resources dealt with

3. Error Handling
• What errors are caught and what is done

• Information Hiding
• How much detail is exposed
• Impacts all three of the above



Interface 
Principles1



Interface Principles

• Simple
• General
• Regular
• Predictable
• Robust
• Adaptable 



Simple
• Users must understand!

• Do one thing and do it well
• Functionality should be easy to explain

• As small as possible, but never smaller
• Conceptual weight more important than 

providing all functionality
• Avoid long parameter lists

• Choose small set of orthogonal primitives
• Don’t provide 3 ways to do the same thing



General
• Implementation can change, API can’t

• Hide Information!
• Don’t let implementation detail leak into API
• Minimize accessibility (e.g. private classes and members)
• Implementation details can confuse users

• Be aware of what is implementation
• Don’t overspecify behavior of modules
• Tuning parameters are suspect



Regular
• Do the same thing the same way everywhere
• Related things should be achieved by related means
• Consistent parameter ordering, required inputs
• Functionality (return types, errors, resource management)

• Names matter
• Self explanatory
• Consistent across API
• Same word means same thing in API
• Same naming style used
• Consistent with related interfaces outside the API



Predictable
• Don’t violate the principle of Least Astonishment
• User should not be surprised by behavior
• Even if this costs performance

• Don’t reach behind the user’s back
• Accessing and modifying global/static variables
• Secret files or information written

• Try to minimize use of other interfaces
• Make as self-contained as possible
• Be explicit about external services required

• Document!
• Every class, method, interface, constructor, exception
• Mention states (in stateful applications)



Robust
• Able to deal with unexpected input
• Error Handling (see later)



Adaptable
• API can be extended, but never shortened
• Heavily used APIs likely will be extended

• Information Hiding
• Implementation details should not affect API



Resource 
Management2



Resource 
Management
• Determine which side is responsible for
• Initialization
• Maintaining state
• Sharing and copying
• Cleaning up

• Various resources
• Memory
• Files
• Global variables



Resource 
Management
• Generally, free resources where they were allocated
• Return references or copies?
• Can have huge performance and ease of use impact

• Multi-threaded code makes this especially critical
• Reentrant: works regardless of number of simultaneous executions
• Avoid using anything (globals, static locals, other modifications) 

that others could also use
• Locks can be important



Error 
Handling3



Error Handling
• Catch errors, don’t ignore them

• “Print message and fail” is not always good
• Especially in APIs
• Need to allow programs to recover or save data

• Detect at low level, but handle at high level
• Generally, error should be handled by calling routine
• The callee can leave things in a “nice” state for recovery
• Keep things usable in case the caller can recover



Fail Fast
• Report as soon as an error occurs

• Sometimes even at compile time!
• Use of static types, generics



Error Management
• Return Values
• Should be in form the calling function can use
• Return as much useful information as possible
• Sentinel values only work if function cannot return all 

possible values of that type
• Define pairs, or return another parameter to indicate errors

• Use Error “wrapper function” if Needed
• Consistent way of marking, reporting error status
• Encourages use
• But, can add complexity



Exceptions
• Generally indicate a programming error
• Programming construct
• Set exception value (e.g. as return)
• Other program operation when exception thrown
• Exceptions usually in global registry

• Include information about failure
• For repair and debugging

• Exceptions should generally be unchecked
• Automatically process globally, rather than require 

explicit checks over and over



Exceptions
• Only use in truly exceptional situations
• Never use as a control structure
• The modern GOTO

• Never use exceptions for expected return values
• e.g. Invalid file name passed to library is 

“common”, not an exception


