
Project: MU Calculator
CSCI 330: Programming Languages

Objectives

1. Design a solution at various levels to evaluate an expression passed in as a string in a
programming language of your choice.

2. Apply the theory of Lexical Analysis (Scanning) to tokenize a string into lexemes
representative of operands (numbers) or operators (addition, subtraction,
multiplication, division, exponentiation)

3. Apply the theory of Parsing to convert a stream of tokens into an Abstract Syntax Tree
representative of an arithmetic expression considering operator precedence and
associativity.

4. Evaluate an Abstract Syntax Tree representation of an arithmetic expression to compute
the answer

Rules and Guidelines

• You may work in a team with up to three people. All team members must contribute
equally to the project. You may also choose to work by yourself or with a pair.

• I will evaluate your program differently based on the language you choose to implement
your solution in. Some languages will be given a difficulty score.

• Zero late submissions will be permitted for this assignment. Please observe/check the
due date indicated on Autolab.

• You must include comprehensive instructions as to how I build and run your application.

Usage

The application can be a graphical application or a console-based application.

• Upon running your application, the user should be able to enter an expression in some
way (either by typing into a prompt or with physical buttons representing every possible
character – like an actual calculator).

• There should be some way the user can then calculate the expression’s value with the
result being displayed. For a graphical application this could be done with an “=”,
“Calculate” or “Enter” button. For a console/terminal application this could be done by
pressing enter.

• If the user enters any invalid symbol or if the expression is malformed, the user should
be presented with an error.

• The user should be able to enter another expression to evaluate and display the
calculated result.

• Finally, there should be a way for the user to exit or quit the application.

Required Operations / Operands

• Numbers can be positive integers or floating-point values.
o Integers may have any number of leading zeros (e.g. 00001 is equivalent to 1).
o Floating-point values must have exactly one decimal point and may have any

number of digits after the decimal point.
o For both “integers” and “floating-point” values, they should be stored in a double-

precision type.

• Operations must be one of:
Description Symbol Associativity Precedence Level

o Addition + Left 0
o Subtraction - Left 0
o Multiplication * Left 1
o Division / Left 1
o Exponentiation ^ Right 2
o A higher precedence level means the operation should be performed first. For

example, given the expression “1+2*3”, the multiplication of 2*3 should happen
first (rather than the addition of 1+2).

• Symbols must be one of:

o Left parenthesis (
o Right parenthesis)
Left and Right Parentheses should also be permitted to force precedence changes.

Please note that you must have matching parentheses. For example, (1+2)*3 forces
the addition of 1 + 2 to occur before the multiplication.

Mismatched parentheses (extra parentheses on either side) should result in an error
presented to the user. For example ((1+2) would result in an error

• Constant Variables must be one of:
o pi representing the floating-point constant value of 3.14159265358979
o e representing the floating-point constant value of 2.71828182845904

• Whitespace (extra spaces or tabs) should be ignored

Sample Expressions (and their Answers):
1 + 2.5 3.5
2.5 * (3 + 4) / 5 3.5
e ^ (pi – 2) 3.1317521917
pi ^ 2.0 9.8696044011
4 ^ 3 ^ 2 262144
(4 ^ 3) ^ 2 4096

Software Design/Architecture

Part 1: Lexical Analyzer

Input: a string (a list of characters)
Output: a list of lexemes

Required Lexemes:

• PLUS + symbol
• MINUS - symbol
• TIMES * symbol
• DIVIDES / symbol
• POWER ^ symbol
• LPAREN (symbol
• RPAREN) symbol
• NUMBER an int/float -- should “hold” the underlying value
• PI represents the “pi” literal
• E represents the “e” literal

Examples:
1 + 2 è NUMBER(1.0) ADD NUMBER(2.0)
(pi - 5.2) ^ 4 è LPAREN PI MINUS NUMBER(5.2) RPAREN POWER NUMBER(4)

Hints:

• You should be able to scan single character by single character.
• Extracting the lexemes for all operators and parentheses is easy, so do that first.
• Extracting the lexemes for e and pi are probably the next easiest.
• Finally, focus on parsing a number. An integer and floating-point number start the same

way (with a sequence of digits [0-9]. Only floating-point values have a “period” while
anything else indicates the end of a number.

Visual Representation:

Before Lexical Analysis:

Array of Characters
(1 2 + 2 . 1 4) ^ p i - e

After Lexical Analysis:

Stream/Array of Lexemes
LPAREN NUMBER(12) PLUS NUMBER(2.14) RPAREN POWER PI MINUS E

Part 2: Expression Parser

Input: a list of lexemes
Output: an Abstract Syntax Tree (expression tree)

Required Grammar:

Exp := Exp PLUS Exp
 | Exp MINUS Exp
 | Exp TIMES Exp
 | Exp DIVIDES Exp
 | Exp POWER Exp
 | Term

Term := LPAREN Exp RPAREN
 | Num

Num := NUMBER
 | PI
 | E

Required “Tree” Nodes:

- NumberNode
o Should hold the numerical value stored within the NUMBER lexeme
o You could have PI and E correspond to a number node with its constant value

- ExpressionNode
o Should hold three things:

§ LHS – either a NumberNode or an ExpressionNode that corresponds to
the left-hand side of an operation

§ RHS – either a NumberNode or an ExpressionNode that corresponds to
the right-hand side of an operation

§ Operator – information that contains the operator type (for evaluation)
o You can have special nodes for each operator type if you want to (e.g. AddNode,

SubNode, MulNode, DivNode, ExpNode), but the design is up to you.

Tree Representation:

In an Object-Oriented Language, you could have a Class Hierarchy where you have a TreeNode
class that has NumberNode and ExpressionNode extend the TreeNode. By doing so,
ExpressionNode can just hold onto a TreeNode. You will likely need to introduce support for
providing an evaluate method that is specialized for each node type.

In a Functional Language, you can use a Discriminated Union (Variant Type) to hold onto the
corresponding Node type for the left- and right-hand side. You can even model what we did for
the Art lab in OCaml.

Tree Construction:

As you scan the sequence of lexemes from left-to-right, you will need to decide what to do
based on an operator’s precedence (and compare that to the “previous” operator’s
precedence. Assume the default precedence to be lower than the “lowest” precedence

Pseudocode:

expr (prev_precedence=-1):
 lhs ß term()
 while true
 op ß nextLexeme() // ensure that it’s an operator
 curr_precedence ß precedence(op)
 if curr_precedence < prev_precedence
 break
 if association(op) == left_to_right
 rhs ß expr(curr_precedence + 1)
 else
 rhs ß expr(curr_precedence)
 lhs = ExpressionNode (lhs, op, rhs)
 return lhs

term():
 val ß nextLexeme()
 if val is NUMBER
 return NumberNode (val.value)
 else if val is PI
 return NumberNode (3.14159…)
 else if val is E
 return NumberNode (2.71828…)
 else if val is LPAREN
 node ß expr()
 assert (nextLexeme() is RPAREN)
 return node
 else
 // failure – expected number but got something else

Example 1:

Lexeme Array Prior Op
Precedence Tree

NUM(1) PLUS NUM(2) MINUS NUM(3) -1

NumNode(1)

NUM(1) PLUS NUM(2) MINUS NUM(3) -1

 AddNode
 / \
NumNode(1) *

NUM(1) PLUS NUM(2) MINUS NUM(3) 0

 AddNode
 / \
NumNode(1) NumNode(2)

NUM(1) PLUS NUM(2) MINUS NUM(3) 0

 MinusNode
 / \
 AddNode *
 / \
NumNode(1) NumNode(2)

NUM(1) PLUS NUM(2) MINUS NUM(3) 0

 MinusNode
 / \
 AddNode NumNode(3)
 / \
NumNode(1) NumNode(2)

Example 2:

1+2*3-8/(3-1)

NUM(1) PLUS NUM(2) TIMES NUM(3) MINUS NUM(8) DIVIDES LPAREN NUM(3) MINUS NUM(1) RPAREN

 MINUS
 / \
 PLUS DIVIDES
 / \ / \
1 TIMES 8 MINUS
 / \ / \
 2 3 3 1

Part 3: Expression Evaluator
Input: an Abstract Syntax Tree (expression tree)
Output: a number

This is actually the easiest part of the assignment!

Assuming you have an expression tree, for all ExpressionNodes, recursively evaluate the LHS
and RHS, then apply the operation. Finally, return the result.

Pseudocode:

evaluate(node)
 if node is ExpressionNode
 lhs ß evaluate(node.lhs)
 rhs ß evaluate(node.rhs)
 return lhs (node.op) rhs
 else
 return node.value // it’s a NumberNode!

Evaluation Criteria

This project is worth 200 points total.

• [50 pts] Lexical Analysis
o [10 pts] Token Definitions
o [20 pts] String Parsing
o [10 pts] Error Detection of invalid lexemes or extra lexemes at the end
o [10 pts] Style / Creativity / Design

• [50 pts] Expression Parsing
o [25 pts] Node Definitions
o [20 pts] Parsing Algorithm Correctness
o [5 pts] Style / Creativity / Design

• [25 pts] Expression Evaluation
o [20 pts] Correctness
o [5 pts] Style / Creativity / Design

• [50 pts] Program Entrypoint
o [10 pts] User input / exiting
o [10 pts] Lexing error reporting
o [10 pts] Parsing error reporting
o [10 pts] Calculated answer reporting
o [5 pts] Style / Creativity / Design

• [25 pts] Documentation and Directions
o [10 pts] Directions on Building / Running your Application
o [15 pts] Documentation of Classes, Algorithms, etc

Extra Credit Opportunities

Language Selection

Choosing a less familiar language (or one that we’ve extensively used in this class) will earn you
extra points. Whatever score you earn I will multiply it by the multiplicative factor specified. If
you want to program in a language which is not listed, please let me know and I will tell you
which tier the language falls under.

Tier Multiplicative Factor Languages

0 1.00x Java
C++

1 1.05x

Python
Javascript
PHP
C
C#

2 1.10x

Ruby
Kotlin
Scala
Swift
Go

3 1.15x

OCaml
F#
Rust
Lisp

User Interface

A traditional command-line application is what we are used to for most assignments so far
throughout our MU CS student career; however, I am giving everyone an opportunity to
develop a graphical user interface-based application. If you choose to create a GUI, I will add
additional multiplicative factor:

• 1.00x for a command line interface
• 1.05x for a graphical interface that has a text box and a place for an answer to appear
• 1.15x for a graphical interface that has buttons for every character that can be entered

along with a display of user input and a place for the calculator “output”

