
Subprograms:
Parameters
Programming Languages
William Killian
Millersville University

Outline

• Terminology
• Signature
• Formal vs. Actual
• Parameter Correspondence

• Passing Modes
• Semantic
• Actual

• Passing Arrays

Terminology

Signature

Portion of the Subprogram that tells us its interface but
not its implementation.

Contains:
1. Return type (if any)
2. Name
3. Count, order, and type of all Parameters

The type signature omits the name

Parameters

Within a definition:
int magic(int a, int b, int c) {

return b * b – 4 * a * c;
}

Within a call:

int d = magic(a, a + 1, a * 4);

Parameters

Within a definition:
int magic(int a, int b, int c) {

return b * b – 4 * a * c;
}

Within a call:
int d = magic(a, a + 1, a * 4);

Called a formal parameter
• A “dummy” variable listed in the signature
• Used within the function’s implementation

Called an actual parameter
• Represents a value or address
• Determined at the point of execution

Parameter Correspondence

Actual Parameters must map to Formal Parameters

How do you think we should be able to map these?

Parameter Correspondence

Actual Parameters must map to Formal Parameters
Positional
• The first actual parameter corresponds to the first formal

parameter, the second actual parameter corresponds to the
second formal parameter, and so on…

• Very easy to check/implement
Keyword
• The name associated with the formal parameter must be used at

the call site (where a subprogram is called)
• Parameters can appear in any order
• Intent can be clearer, but it harder to check/implement

Passing
Modes

Semantic Modes

• In mode
Information is sent to the subprogram

• Out mode
Information is retrieved from the subprogram

• In-Out mode
Information is sent/received to/from the subprogram

Semantic Modes

Actual Modes

• Pass-by-Value
• Pass-by-Result
• Pass-by-Value-Result
• Pass-by-Reference
• Pass-by-Name

Pass-by-Value (In mode)

• The value of the actual parameter is used to
initialize its corresponding formal parameter
• The underlying value is usually copied from one

memory cell to another
• Advantages:
• Simple

• Disadvantages:
• Additional storage required
• Copied value can be large (in space)

Pass-by-Value

int by_value (int x) {
int y = 4;
x += 4;
return y + x;

}
int y = 3;
int z = by_value (y);
// y =
// z =

Pass-by-Value

Most languages do pass-by-value default:
• C
• C++
• Java
• C#
• Javascript
• Python* (for immutable types)

Pass-by-Result (Out mode)

• There is no passed initial value, but the formal
parameter acts like a local variable.
• When control flow returns to the caller, copy the

result back to a memory cell.
• Advantages:
• Useful for when you have multiple “outputs”

• Disadvantages:
• For fun(x, list[x]) should the address of
list[x] be determined before or after execution?
• Special semantics need to be determined for calls that

use the same memory cell twice: fun(a, a)

Pass-by-Result

void by_result (int x) {
int y = 2;
x = y + 4;

}

int y = 3;
by_result (y);
// y =

Pass-by-Value-Result (In-Out mode)

• The expected combination of pass-by-value and
pass-by-result

• Also called pass-by-copy (copy ALL THE THINGS)

• Formal parameters all have local storage

Pass-by-Value-Result

Very few languages can pass-by-value-result:
• FORTRAN

Pass-by-Value-Result

void by_value_result (int x) {
int y = 4;
x = y + 4;

}

int y = 3;
by_value_result (y);
// y =

Pass-by-Reference (In-Out mode)

• Instead of passing a value, pass an access path (or
memory address).
• Also called pass-by-sharing
• Advantages:
• Lower memory footprint

• Disadvantages:
• Slower access (must deference to retrieve value)
• Potential side effects (multiple reference updates)
• Aliasing isn’t a lot of fun

Pass-by-Reference

void by_reference (int x) {
int y = 4;
x = y + 4;

}

int y = 3;
by_reference (y);
// y =

Pass-by-Reference

Most languages can pass-by-reference:
• C++
• Java (reference semantics for objects)
• C# (ref keyword)
• Python* (for mutable types)

Pass-by-Name (In-Out mode)

• Literal Text Substitution
• Formals bound at time of call
• Values bound at time of reference or assignment
• Advantages:
• Provides the latest possible binding
• Extremely flexible

• Disadvantages:
• No obvious semantics by looking at it

It was possible to do this natively in ALGOL; harder to do
today due to language design decisions.

Pass-by-Name (Jensen’s Device)

#define SUM(Type, Var, Low, High, Term) \

({ \

int low = (Low); \
int high = (High); \

Type sum = (Type)0; \
for (Var = low; Var <= high; ++Var) { \

sum += (Term); \

} \
sum;

})

Pass-by-Name (Jensen’s Device)

double sum = SUM(double, i, 1, 100, 1.0 / i)

// expands to:
double sum = ({
int low = (1);
int high = (100);
double sum = (double)0;
for (i = low; i <= high; ++i) {
sum += (1.0 / i);

}
sum;

});

Pass-by-Name (Jensen’s Device)

double prod = SUM(double, i, 1, 100, SUM(double, j, i, 100, i * j))

// expands to
double prod = ({
int low = (1);
int high = (100);
double sum = (double)0;
for (i = low; i <= high; ++i) {
sum += (({
int low = (i);
int high = (100);
double sum = (double)0;
for (j = low; j <= high; ++j) {
sum += (i * j);

}
sum;

}));
}
sum;

});

Passing Arrays
as Parameters

Languages Where Passing Arrays is Fine
and Works as Expected

C# D Java Python

JavaScript Ruby Perl PHP

Lisp OCaml F# FORTRAN

Languages Where Passing Arrays is Weird

C C++

Array Passing in C/C++

Definition of a stack-based array in C:

int arr[5];

The type of arr is int[5]

Passing arr as a parameter will decay its type.
Decay means automatic conversion (loss of information)
int*

Array Passing in C/C++

Definition of a heap-based array in C++:

int* arr = new int[5];

The type of arr is int*

Passing arr as a parameter doesn’t change its type:
int*

Array Passing in C/C++

We don’t want heap-based and stack-based arrays to
interact differently, so they need to be converted to a
common type

• Though it is possible to accept only stack-based arrays!

Multi-Dimensional Array Passing
in C++
double m[3][4];

// valid
void mat_inverse (double (&m)[3][4])
void mat_inverse (double* m[4])
// invalid
void mat_inverse (double** m)

We decay the outer-most dimension only

