
Statements
Programming Languages
William Killian
Millersville University

Outline

• Statements vs. Expressions
• Sequenced Statements
• Selection Statements
• Two-way
• Multi-way

• Iterative Statements
• Pre-test
• Post-test
• Counter controlled
• Data-Structure controlled

• Control Mechanisms

Statements vs. Expressions

• Expressions will always have a type
• Expressions will always yield a value

• Statements may have no type or value

Python
print ("Hello, world!")

// C / C++ / C# / Java
if (x < min) {

min = x;
}

Sequenced Statements

• Statements are said to be sequenced if they are
evaluated/executed in a sequenced order
• Usually referred to as blocks

// C-like languages
{

statement1;
statement2;
statement3;

}

ruby
do

statement1
statement2
statement3

end

(* F# / OCaml *)
begin

statement1;
statement2;
statement3

end

python
indentation

statement1
statement2
statement3

Lisp
(progn

(statement1)
(statement2)
(statement3))

Sequenced Statements

Design Decisions
• Symbols or keywords used to denote a block
• Usually curly braces or begin/end

• Should indentation matter?
• Permitted in F#
• Required in Python

• Statement separators?
• Semicolons in most languages (optional in F#)
• None for most scripting languages

Selection
Statements

Selection Statements

• Selection provides the ability to choose between
two or more paths of execution

• Two-Way Selection
• Choosing between two options
• Often based on a yes/no decision

• Multi-Way Selection
• Choosing between more than two options
• Often based on a value

Two-Way Selection

Commonly called an if-else statement

General Form:
if <control_expression>

then <clause>
else <clause>

• What’s the form of the control expression?
• How are the clauses specified?
• Can we nest two-way selectors?

Two-Way Selection: Control

• The type of the control expression usually must
evaluate to a Boolean type
• Coerced from integral type in C, C++, and Python

• The control expression might be wrapped within
parentheses. This is done in most C-like languages.

Two-Way Selection

C-Like Languages

if (cond)
stmt;

else
stmt;

Two-Way Selection

Python

if cond:
stmt

else:
stmt

Two-Way Selection

Ruby

if cond [then]
stmt

else
stmt

end

Two-Way Selection

OCaml

if cond then
expr

else
expr

Nested Selectors

if (cond)
if (cond2) stmt1;

else stmt2;

Question: Which if gets the else?

Nested Selectors

C-Like Languages

if (cond) {
stmt1;

} else if (cond2) {
stmt2;

} else {
stmt3;

}

Nested Selectors

Python

if cond:
stmt1

elif cond2:
stmt2

else:
stmt3

Nested Selectors

Ruby

if cond then
stmt1

elif cond2 then
stmt2

else
stmt3

end

Multi-Way Selection

Allow the selection of one of any number of
statements or statement groups

Design Issues:
• Form + type of control expression?
• Syntax for selectable segments?
• Execute multiple segments?
• Specification for case values?
• Unrepresented values?

Multi-Way Selection

C, C++, Java, Javascript

switch (expr) {
case val1: stmt1; break;
case val2: stmt2; break;
case val3: stmt3; // fall through
[default: stmtN;]

}

Fall through means that stmtN executes after stmt3

Multi-Way Selection

Ruby

case
when cond1 then stmt1
when cond2 then stmt2
else stmt3

end

Multi-Way Selection

OCaml

match expr with
| pattern1 -> expr1
| pattern2 [when cond] -> expr2
| pattern3 -> expr3

The first matched pattern will return the
corresponding expr

Multi-Way Selection

Lisp
(cond
(cond1 expr1)
(cond2 expr2)
(cond3 expr3)
(t exprN))

The first truthy condition will return the
corresponding expression

Iterative
Statements

Iterative Statements

There are only three ways to perform the same
statement more than once:
1. Manual repetition in code
2. Recursive
3. Iteration

How can we control iteration?

Infinite Loops

C-like Languages
while (true)

<stmt>

Ruby
loop do

<stmt>
end

Python
while True:

<stmt>

F# / OCaml
while true do

<expr>
done

Pre-test Loops

• Also known as a while loop

• Condition is checked before each iteration
• If the condition evaluates to true, the loop body is

executed
• If the condition evaluates to false, the loop is done

executing

Syntactically like an if-statement with no “else”

Pre-test Loops

Python
while cond:

<stmt>

C-like Languages
while (cond)

<stmt>

F#
while cond do

<expr>

OCaml
while cond do

<expr>
done

Pre-test Loops

Python (w/ else)
while cond:

<stmt>
else:

<stmt>

Ruby
while cond [do]

<stmt>
end

Ruby (until)
until cond [do]

<stmt>
end

Post-test Loops

• Also known as a do-while loop

• Condition is checked after each iteration
• If the condition evaluates to true, the loop body is

executed
• If the condition evaluates to false, the loop is done

executing

Execute the body at least once

Post-test Loops

C-like Languages
do
<stmt>

while (cond)

Ruby
begin
<stmt>

end while cond

Advantages? Disadvantages?

Counter-Controlled Loops

• Also known as a for-loop

Three Components:
• Looping variable (with initial value)
• Exit condition (based on looping variable)
• Modifier for looping variable (usually increment)

Questions:
What is the type & scope of the variable?
Should we be able to change the variable?

Counter-Controlled Loops

C-like Languages
for (<init>; <test>; <update>)

<stmt>

<init> - declaration with initializer or assignment
Evaluated only once

<test> - same as the condition for while
If omitted, infinite loop

<update> - expression that modifies the variable

Counter-Controlled Loops

C-like Languages
for (<init>; <test>; <update>) {

<stmt>
}

{ // rewritten as a while
<init>
while <test> {

<stmt>
<update>

}
}

Counter-Controlled Loops

OCaml / F#

for <var> = <low> to <high> do
<expr>

done

for <var> = <high> downto <low> do
<expr>

done

Emulated – not an actual loop. Use Recursion

Counter-Controlled Loops

OCaml / F#

for <var> = <low> to <high> do
<expr>

done

let <var> = <low> in <expr>;
let <var> = <low> + 1 in <expr>;
let <var> = <low> + 2 in <expr>;
...

Counter-Controlled Loops

OCaml / F#

for <var> = <high> downto <low> do
<expr>

done

let <var> = <high> in <expr>;
let <var> = <high> - 1 in <expr>;
let <var> = <high> - 2 in <expr>;
...

Data Structure Controlled Loops

Traversal through an array or data structure is a
common pattern across most languages

Case Studies
• PHP
• Java
• C#
• C++
• Python
• Ruby

Data Structure Controlled Loops

PHP
arr must model an Iterator

// traversing regular array
foreach (arr as $value)

stmt

// traversing associative array
foreach (arr as $key => $value)

stmt

Data Structure Controlled Loops

Java
arr must model Iterable<E> (iterator())

Called an enhanced for-loop

// traversing regular array
for (var x : arr)

<stmt>

Data Structure Controlled Loops

Java
iter must model Iterator<E> (next(), hasNext())

The equivalent to the prior slide

var iter = arr.iterator();
while (iter.hasNext()) {

var x = iter.next();
<stmt>

}

Data Structure Controlled Loops

C#
arr must model IEnumerable<T> (GetEnumerator())

Called a foreach loop

foreach (var elem in arr)
<stmt>

Data Structure Controlled Loops

C#
en must model IEnumerator<T> (MoveNext(), Current)

The equivalent to the prior slide

var en = arr.GetEnumerator();
while (en.MoveNext()) {

var elem = en.Current;
<stmt>

}

Data Structure Controlled Loops

C++
obj must model Container<T> (begin(), end())

Called a Range-based for loop

for (auto& elem : obj)
<stmt>

begin() and end() must return an Iterator<T>

Data Structure Controlled Loops

C++
The equivalent to the prior slide

auto&& __range = obj;
auto __begin = begin(__range);
auto __end = end(__range);
for (; __begin != __end ; ++__begin)
{

auto& elem = *__begin;
<stmt>

}

Data Structure Controlled Loops

Python
elems must model iterator (__iter__())
__iter__() must model incrementable (__next__())

For loops rely on objects that can be iterated

for val in elems:
<stmt>

Data Structure Controlled Loops

Python
The equivalent to the prior slide

obj = iter(elems)
try:

while True:
val = next(obj)
<stmt>

except StopIteration:
pass

Data Structure Controller Loops

Ruby
Three instances of iterator methods
• times

10.times { puts "Hello" }
executes the block 10 times

• each
arr.each { |x| puts x }
prints each element of an array

• upto
330.upto(420) { |i| puts i }
330 <= i < 420

Control
Mechanisms

Control Mechanisms

• Infinite loops can’t run forever

• Complex logic can’t always be expressed in a pre-
or post-test

• There are times where we may want to:
• Prematurely exit a loop / control structure
• Prematurely advance to the next loop iteration

Control Mechanisms: break

• Used to prematurely exit a loop or control structure

int sum = 0;
for (int x : arr) {

if (x > 10) break;
sum += x;

}
// sum ?

Control Mechanisms: continue

• Used to prematurely advanced to the next iteration

int sum = 0;
for (int x : arr) {

if (x > 10) continue;
sum += x;

}
// sum ? Ruby:

Called next
See also: redo

Control Mechanisms: goto

• Used to arbitrarily transfer control
• “Go To Statement Considered Harmful” – Dijkstra
• Direct mapping to low-level assembly instructions
• C / C++ / FORTRAN

A Note on Theory

(1960s) All algorithms represented by flow
charts can be implemented with

• Two-way selection (if/else)
• Pre-test logical loops (while)

Which structures do you most commonly use?

