
OCaml: Variants
Programming Languages

William Killian
Millersville University

Core OCaml Datatypes

• Primitives
int float string bool

• Aggregates:
'a list tuple (product type)

• What’s missing?
sum types

Variants

• Also known as discriminated unions
• Must provide a named label for each option
• Only one can be active at any time
• Examples:
type suit =
Spades | Hearts | Clubs | Diamonds

type 'a option =
Some of 'a | None

Variants

• They can be used to define a new type and possible
range of values for that type:

type suit =
Spades | Hearts | Clubs | Diamonds

• They can opDonally hold informaDon.
• We will have to add of <type> to each choice which

can hold addi9onal informa9on

type int_option =
Some of int | None

Variant Behavior

type suit =
Spades | Hearts | Clubs | Diamonds

• When we have an expression of type suit, it can
only hold one of four possible choices:
• Spades, Hearts, Clubs, and Diamonds

• The tag, or discriminator, tells OCaml what choice
we want to currently select
• The discriminator must always start with a capital

letter. OCaml will yell at us otherwise.

Variant Behavior

• You can view each choice as a box.
• By default, each box (or choice) will be empty
• When a discriminator includes a storage specifier

(denoted with of <type>), then the box will hold
a value of the specified type

type int_option = Some of int | None
let x = None
let y = Some 5
(* x and y both have type int_option *)

Using Variants

type suit =
Spades | Hearts | Diamonds | Clubs

type rank =
Ace | King | Queen | Jack | Num of int

(* suit and rank are variants *)

type card = rank * suit

let top_of_deck : card = (Ace, Spades)
let bottom_of_deck : card = (Num 2, Clubs)

Using Variants

• But what if I wanted to inspect a variant?
let top = List.hd (shuffle deck)
print_card top

• How can we write print_card?
• Need to inspect the rank
• Need to inspect the suit

• Ideas?

Pa8ern Matching

type suit =
Spades

| Hearts
| Diamonds
| Clubs

match r with
Spades -> "♠"

| Hearts -> "♥"
| Diamonds -> "♦"
| Clubs -> "♣"

• For each discriminator, add a match case.
• All expressions for the match must result in the same type

Pattern Matching

• For each discriminator, add a match case.
• All expressions for the match must result in the same type

suit string

type suit =
Spades

| Hearts
| Diamonds
| Clubs

match r with
Spades -> "♠"

| Hearts -> "♥"
| Diamonds -> "♦"
| Clubs -> "♣"

Pa8ern Matching

type rank =
Ace

| King
| Queen
| Jack
| Num of int

match r with
Ace -> "Ace"

| King -> "King"
| Queen -> "Queen"
| Jack -> "Jack"
| Num x -> string_of_int x

• For each discriminator, add a match case.
• All expressions for the match must result in the same type

The type of x is defined by the type specified in the discriminator

Pa8ern Matching

type rank =
Ace

| King
| Queen
| Jack
| Num of int

match r with
Ace -> "Ace"

| King -> "King"
| Queen -> "Queen"
| Jack -> "Jack"
| Num x -> string_of_int x

• For each discriminator, add a match case.
• All expressions for the match must result in the same type

The type of x is defined by the type specified in the discriminator

rank string

Problem

• I want to have a list of int, float, bool, and string
• But OCaml is yucky and I can’t do that…

… unless I use variants!

Solu3on Procedure:
1. Define a type that can hold all the types I need
2. Write appropriate helper methods
• string_of

Defining a Type

• We need to hold: int, float, bool, and string

type box =
Int of int

| Float of float
| Bool of bool
| String of string

Using the Type

let my_list = [
Int 4;
Float 1.2;
Bool true;
String "no-u";
Int 6;

]

my_list has type box list
where each element is of type box

Using the Type

my_list has type box list
where each element is of type box

I should write a string_of function which accepts
a box value and returns the string representation

let string_of v = ...
(* with types specified *)
let string_of (v:box) : string = ...

Using the Type

let string_of v =
match v with
| Int i -> string_of_int i
| Float f -> string_of_float f
| Bool b -> string_of_bool b
| String s -> s

Using the Type

let string_of = fun v ->
match v with
| Int i -> string_of_int i
| Float f -> string_of_float f
| Bool b -> string_of_bool b
| String s -> s

(* rewritten using fun *)

Matching Func@ons

The code pattern of:
fun v -> match v with

is so common, there is a special abbreviation syntax
function

where the argument name is completely omitted

• Match expression rules still apply
• All cases must be elaborated
• All cases must return the same type

Matching Functions

let string_of = function
| Int i -> string_of_int i
| Float f -> string_of_float f
| Bool b -> string_of_bool b
| String s -> s

let as_string =
List.map string_of my_list

(* ["4"; "1.2"; "true"; "no-u"; "6"] *)

Recap

• We can define our own discriminated union type
when we want to choose between opDons:

type t = C1 | C2| C3
• Each choice can opDonally hold a value.

type t = C1
| C2 of int
| C3 of string * float

• Must use paTern matching / match … with when
extracDng informaDon
• FuncDon is shorthand for

fun x -> match x with

