# OCaml: Tuples and Higher-Order Functions 

Programming Languages
William Killian
Millersville University

## Outline

- Tuples
- Syntax
- Bindings
- Pattern Matching
- Higher-Order Functions
- Definition
- Anonymous Functions
- Bonus: Bindings <==> Anonymous Functions

Tuples

## Tuples

- Tuples are a product type
- Used for when we want to group entities together
- Elements are access by location
type student $=$ string * int * float
- We created a new type called student
- It is an alias (or another name for a tuple)
- This tuple contains a string, an int, and a float


## Tuple Syntax

- How could we store a point?
- What is its datatype (as a tuple)?
- How can we create a new point?


## Tuple Syntax

- How could we store a point?

We should be able to store a point as a pair of coordinates
We can access its data by "location"

- What is its datatype (as a tuple)?
type point = float * float
This means that a point is modeled as two floats
- How can we create a new point?

```
let my_point \(=(1.2,0.0)\)
let my_point : point = (1.2, 0.0)
let my_point : float * float = (1.2, 0.0)
(* all three of these are the same! *)
```


## Tuple Syntax

Expression / Value:


## Always enclosed in parentheses

Datatypes can be deduced for each element Immutable - you cannot change a tuple

- You can read from a tuple
- You can create a new tuple


## Tuple Bindings

Binding refresher: providing a name to a value
let point $=(2.0,3.14)$

Extracting the " $x$ " value of the point:
let (x, _) = point
Extracting the " y " value of the point:
let (_, y) = point
Note: The _ means to ignore

## Tuple Bindings

let big = (1, 3.14, "hello", true, 5)

1. What is the type of big?
2. How can we extract the $2^{\text {nd }}, 4^{\text {th }}$, and $5^{\text {th }}$ elements with identifiers "pi", "passing", and "courses" ?
3. How can we compare the $1^{\text {st }}$ and $5^{\text {th }}$ element for equality? (hint: two steps)

## Tuple Bindings

let big = (1, 3.14, "hello", true, 5)

1. What is the type of big?

## int * float * string * bool * int

2. How can we extract the $2^{\text {nd }}, 4^{\text {th }}$, and $5^{\text {th }}$ elements with identifiers "pi", "passing", and "courses" ?
let (_, pi, _, passing, courses) = big
3. How can we compare the $1^{\text {st }}$ and $5^{\text {th }}$ element for equality? (hint: two steps)

$$
\begin{aligned}
\text { let eq = } & \text { let (first, _, _, _, last) in } \\
& \text { first = last }
\end{aligned}
$$

## Pattern Matching

- Tuples can lend to clean, expressive code when combined with pattern matching
- Can be combined with other patterns (e.g. for lists)

Problem: Compute the centroid (geometric average) of three points which form a triangle.
let points $=[(0.0,1.0)$, (6.0, 2.0),

What is the type of points? (3.0, 5.0)]

## Pattern Matching Examples

Normal List:
match 1 with

$$
\begin{aligned}
& \mid[]->(* \text { empty list *) } \\
& \mid \text { h::t -> (* have more *) }
\end{aligned}
$$

Normal Tuple:
match p with
$\mid(0,0)->\left(* \operatorname{origin} *^{*}\right)$
$\mid(x, y)->(*$ general point *)

## Centroid

let centroid list =
let rec average sum n list $=$
match list with
| [] ->
let $(x, y)=s u m$ in (* pull out each coordinate *)
( $\mathrm{x} / . \mathrm{n}, \mathrm{y} / . \mathrm{n}$ ) (* compute average *)
| (x,y)::lst' ->
(* pull out each coordinate *)
let (xs, bs) = sum in (* evolve arguments *)
average (x +. xs, y +. es) (n +. 1.0) list'
in
average 0.0 0.0 list (* sum=0.0, $\mathrm{n}=0.0$ *)

## Pattern Matching Problem

- Count the number of origin points in a list
let rec count_origin lst =


## Pattern Matching Problem

- Count the number of origin points in a list
let rec count_origin lst =
match lst with

$$
\begin{aligned}
& \mid(0,0):: l s t ' ~->~\left(1 ~+~ c o u n t \_o r i g i n ~ l s t '\right) ~ \\
& \mid \text { _::lst' -> count_origin lst' }
\end{aligned}
$$

## Higher Order Functions

## Higher Order Functions (HOFs)

- Functions that either
- Accept one (or more) functions as parameters
- Return a function as a result
- Functions accepting functions as parameters?
- Functions returning functions?


## Why Use Higher-Order Functions?

- Composition
- We can first create smaller functions that solve simple problems
- Then we can compose them together to solve complex problems
- Reduces bugs
- Improves readability
- Enables generic programming / reuse


## Example: map

We have already written one HOF: map
let rec map $f$ l =

## match l with

| [] -> []
| h::t -> (f h)::(map f l)
f : 'a -> 'b
1 : 'a list
returns : 'b list

## Without map...

let rec map_float_of_int 1 = match l with

$$
\left\{\begin{array}{l}
\text { [] -> [] } \\
\text { h::t -> }
\end{array}\right.
$$

(float_of_int h)::(map_float_of_int l)
let rec map_string_of_float $1=$ match 1 with
| [] -> []
| h::t ->
(string_of_float h)::(map_string_of_float l)

## With map...

let rec map $f$ l =
match l with
| [] -> []
h::t -> (f h)::(map f l)
let map_float_of_int l = map float_of_int l
let map_string_of_float l = map string_of_float l

## A More Complex Example

Given a list of integers, I want to:

1. Convert them to a float
2. Then convert the floats to a string

Essentially:

$$
\text { data } \rightarrow \text { float_of_int } \rightarrow \text { string_of_float }
$$

[1;2;3] $\rightarrow$ [1.0;2.0;3.0] $\rightarrow$ ["1.0";"2.0";"3.0"]

## A More Complex Example

let complex l = map string_of_float (map float_of_int l)
let complex $1=$
map (fun x -> string_of_float (float_of_int x)) l

- Both are equivalent in what they do
- The top must call map twice
- The bottom must call map only once


## fun - a function by no-name

We usually write bindings as:

$$
\text { let add } x y=x+y
$$

But we can write:

$$
\text { let add }=\text { fun } x y->x+y
$$

fun is used to indicate that we have a function

- But this function has no name.
- This is called an anonymous (or lambda) function


## Revisiting the Complex Example

```
let complex l =
    map string_of_float (map float_of_int l)
let complex l =
    map (fun x -> string_of_float (float_of_int x)) l
```

Now if only we could get rid of some of these parens...
let complex $1=$
l |> map float_of_int |> map string_of_float
let complex $1=$
map (fun x -> float_of_int x |> string_of_float)

## The Pipeline Operator |>

- Probably one of the coolest functions ever(?)
- Super short definition: let (|>) a f = f a
- Swaps the position of the first argument with the function name. This is known as a "data-first" pattern
- This means the function's first argument comes before the |> operator
- Evaluation now "in-order" left-to-right


## The Pipeline Operator in Use

[-1.2; 1.0; 0.5; 3.5; -5.5; 0.75; 4.2; 0.31]
let magic (l:float list) = l
| $>$ List.filter (fun $x->x>=0.0$ )
|> List.filter (fun $x$-> $x<=1.0$ )
|> List.map (fun $x->x^{*}$ 100.0)
|> List.map int_of_float
|> List.map string_of_int
|> List.map (fun $x$-> $\times$ ^ " ") (* string concatenation *)
|> List.fold_left (^) ""

## The Pipeline Operator not in Use

[-1.2; 1.0; 0.5; 3.5; -5.5; 0.75; 4.2; 0.31]
let magic (l:float list) = l
List.fold_left (^) ""
(List.map (fun x -> x ^ " ")
(List.map string_of_int
(List.map int_of_float
(List.map (fun $x$-> $x^{*}$ 100.0)
(List.filter (fun $x$-> $x<=1.0$ )
(List.filter (fun x -> x >= 0.0)
1)))))

## Revisiting Bindings

let $x=$ e in expr
can be rewritten as:
(fun $x$-> expr) (e)

In fact, it's what the interpreter does!
let $x=5$ in
let $y=x$ * 2 in

$$
x+y
$$

## Revisiting Bindings

let $x=5$ in
let $y=x^{*} 2$ in
$x+y$
(fun $x$->
let $y=x$ * 2 in
$x+y$
) (5)
(fun $x$->
(fun y ->
$x+y)(x * 2)$
) (5)

