
OCaml: Tuples and
Higher-Order Functions

Programming Languages
William Killian

Millersville University

Outline

• Tuples
• Syntax
• Bindings
• Pattern Matching

• Higher-Order Functions
• Definition
• Anonymous Functions

• Bonus: Bindings <==> Anonymous Functions

Tuples

Tuples

• Tuples are a product type
• Used for when we want to group entities together
• Elements are access by location

type student = string * int * float

• We created a new type called student
• It is an alias (or another name for a tuple)
• This tuple contains a string, an int, and a float

Tuple Syntax

• How could we store a point?

• What is its datatype (as a tuple)?

• How can we create a new point?

Tuple Syntax

• How could we store a point?
We should be able to store a point as a pair of coordinates
We can access its data by “location”

• What is its datatype (as a tuple)?
type point = float * float
This means that a point is modeled as two floats

• How can we create a new point?
let my_point = (1.2, 0.0)
let my_point : point = (1.2, 0.0)
let my_point : float * float = (1.2, 0.0)
(* all three of these are the same! *)

Tuple Syntax

Expression / Value:
("Dr. Killian", 327291, 3.38)

Type:
string * int * float

Always enclosed in parentheses
Datatypes can be deduced for each element
Immutable – you cannot change a tuple

• You can read from a tuple
• You can create a new tuple

Tuple Bindings

Binding refresher: providing a name to a value

let point = (2.0, 3.14)

Extracting the “x” value of the point:
let (x, _) = point

Extracting the “y” value of the point:
let (_, y) = point

Note: The _ means to ignore

Tuple Bindings

let big = (1, 3.14, "hello", true, 5)
1. What is the type of big?

2. How can we extract the 2nd, 4th, and 5th elements
with identifiers "pi", "passing", and "courses" ?

3. How can we compare the 1st and 5th element for
equality? (hint: two steps)

Tuple Bindings

let big = (1, 3.14, "hello", true, 5)
1. What is the type of big?

int * float * string * bool * int

2. How can we extract the 2nd, 4th, and 5th elements
with identifiers "pi", "passing", and "courses" ?

let (_, pi, _, passing, courses) = big

3. How can we compare the 1st and 5th element for
equality? (hint: two steps)

let eq = let (first, _, _, _, last) in
first = last

Pattern Matching

• Tuples can lend to clean, expressive code when
combined with pattern matching
• Can be combined with other patterns (e.g. for lists)

Problem: Compute the centroid (geometric average)
of three points which form a triangle.

let points = [(0.0, 1.0),
(6.0, 2.0),
(3.0, 5.0)]

What is the type of points?

Pattern Matching Examples

Normal List:
match l with
| [] -> (* empty list *)
| h::t -> (* have more *)

Normal Tuple:
match p with
| (0,0) -> (* origin *)
| (x,y) -> (* general point *)

Centroid

let centroid lst =

let rec average sum n lst =

match lst with
| [] ->

let (x, y) = sum in (* pull out each coordinate *)
(x /. n, y /. n) (* compute average *)

| (x,y)::lst’ ->

(* pull out each coordinate *)
let (xs, ys) = sum in (* evolve arguments *)

average (x +. xs, y +. ys) (n +. 1.0) lst'
in

average 0.0 0.0 lst (* sum=0.0, n=0.0 *)

Pattern Matching Problem

• Count the number of origin points in a list

let rec count_origin lst =

Pattern Matching Problem

• Count the number of origin points in a list

let rec count_origin lst =
match lst with
| (0,0)::lst' -> (1 + count_origin lst')
| _::lst' -> count_origin lst'

Higher Order Functions

Higher Order Functions (HOFs)

• Functions that either
• Accept one (or more) functions as parameters
• Return a function as a result

• Functions accepting functions as parameters?
• Functions returning functions?

Why Use Higher-Order Functions?

• Composition
• We can first create smaller functions that solve simple

problems
• Then we can compose them together to solve complex

problems

• Reduces bugs
• Improves readability
• Enables generic programming / reuse

Example: map

We have already written one HOF: map

let rec map f l =
match l with
| [] -> []
| h::t -> (f h)::(map f l)

f : 'a -> 'b
l : 'a list
returns : 'b list

Without map…

let rec map_float_of_int l =
match l with
| [] -> []
| h::t ->

(float_of_int h)::(map_float_of_int l)

let rec map_string_of_float l =
match l with
| [] -> []
| h::t ->

(string_of_float h)::(map_string_of_float l)

With map…

let rec map f l =
match l with
| [] -> []
| h::t -> (f h)::(map f l)

let map_float_of_int l =
map float_of_int l

let map_string_of_float l =
map string_of_float l

A More Complex Example

Given a list of integers, I want to:
1. Convert them to a float
2. Then convert the floats to a string

Essentially:

data à float_of_int à string_of_float

[1;2;3] à [1.0;2.0;3.0] à ["1.0";"2.0";"3.0"]

A More Complex Example

let complex l =

map string_of_float (map float_of_int l)

let complex l =

map (fun x -> string_of_float (float_of_int x)) l

• Both are equivalent in what they do
• The top must call map twice
• The bottom must call map only once

fun – a function by no-name

We usually write bindings as:
let add x y = x + y

But we can write:
let add = fun x y -> x + y

fun is used to indicate that we have a function
• But this function has no name.
• This is called an anonymous (or lambda) function

Revisiting the Complex Example
let complex l =

map string_of_float (map float_of_int l)

let complex l =
map (fun x -> string_of_float (float_of_int x)) l

Now if only we could get rid of some of these parens…

let complex l =
l |> map float_of_int |> map string_of_float

let complex l =
map (fun x -> float_of_int x |> string_of_float)

l

The Pipeline Operator |>

• Probably one of the coolest functions ever(?)
• Super short definition:

let (|>) a f = f a

• Swaps the position of the first argument with the
function name. This is known as a “data-first”
pattern
• This means the function’s first argument comes

before the |> operator
• Evaluation now “in-order” left-to-right

The Pipeline Operator in Use

[-1.2; 1.0; 0.5; 3.5; -5.5; 0.75; 4.2; 0.31]

let magic (l:float list) = l
|> List.filter (fun x -> x >= 0.0)

|> List.filter (fun x -> x <= 1.0)
|> List.map (fun x -> x * 100.0)

|> List.map int_of_float

|> List.map string_of_int
|> List.map (fun x -> x ^ " ")

(* string concatenation *)
|> List.fold_left (^) ""

The Pipeline Operator not in Use

[-1.2; 1.0; 0.5; 3.5; -5.5; 0.75; 4.2; 0.31]

let magic (l:float list) = l
List.fold_left (^) ""

(List.map (fun x -> x ^ " ")
(List.map string_of_int

(List.map int_of_float

(List.map (fun x -> x * 100.0)
(List.filter (fun x -> x <= 1.0)

(List.filter (fun x -> x >= 0.0)
l))))))

Revisiting Bindings

let x = e in expr
can be rewritten as:
(fun x -> expr) (e)

In fact, it’s what the interpreter does!
let x = 5 in
let y = x * 2 in

x + y

Revisiting Bindings

let x = 5 in
let y = x * 2 in

x + y

(fun x ->
let y = x * 2 in

x + y
) (5)

(fun x ->
(fun y ->

x + y) (x * 2)
) (5)

