
OCaml: Tail Recursion
Programming Languages

William Killian
Millersville University



Recursion

• A function is recursive when it calls itself
• Two requirements:

1. A base case – the part of the function in which the 
problem can be trivially solved. Does not “call itself”

2. A recursive case – the part of the function in which we
make a smaller version of the same problem and often 
combine

• We can have multiple base cases
• We can have multiple recursive cases



Tail Recursion

• A function is tail recursive when its recursive call is 
the last thing executed by the function
• This means that there cannot be any additional

operations done with the recursive call
• Tail recursion is harder to write at first but easy to 

adapt to over time



A Recursive Problem: sumToN

let rec sumToN n =
if n = 0 then
0

else
n + sumToN (n - 1)

Is this tail recursive? Why or why not?



A Recursive Problem: sumToN

let rec sumToN n =
if n = 0 then
0

else
n + sumToN (n - 1)

- What is the “state” of this function?
- If we had to write it with a loop, what variable(s) 

would we introduce?



Keeping Track of the State

let rec sumToN sum n =
if n = 0 then
(* base case: return the sum *)
sum

else
(* recursive: change sum and n *)
sumToN (sum + n) (n - 1)



Keeping Track of the State

let rec sumToN sum n =
...

sumToN (sum + n) (n - 1)

This is equivalent to the following code:
sum = sum + n
n = n - 1



Problem: The Extra Parameter

let rec sumToN sum n =
if n = 0 then
sum

else
sumToN (sum + n) (n - 1)

We now must call our function like this:
sumToN 0 15



Solution #1: Rebind (Don’t do this)

let rec sumToN sum n =
if n = 0 then
sum

else
sumToN (sum + n) (n - 1)

let sumToN = sumToN 0

This is confusing



Solution #2: Create a Local Binding

let sumToN n =
let rec sumToN sum n =
if n = 0 then
sum

else
sumToN (sum + n) (n - 1)

in sumToN 0 n

This is better, but the names are confusing



Solution #3: Renamed Local Binding

let sumToN n =
let rec sumHelper sum n =
if n = 0 then
sum

else
sumHelper (sum + n) (n - 1)

in sumHelper 0 n

This is (likely) the best



Bonus: Removing arguments

let sumToN =
let rec sumHelper sum n =
if n = 0 then
sum

else
sumHelper (sum + n) (n - 1)

in sumHelper 0

This also works. Why?



So Why Even do Tail Recursion?

• Languages like when we use tail-recursion for two 
big reasons

1. It is a while-loop hidden in disguise

2. We only need to “update” the parameters and “jump” 
back to the top of the function

So we get our loops back, just not in the way you expected


