
OCaml: Recursive Types
Programming Languages

William Killian
Millersville University

Preface: Variants

• Variants allow us to make a choice between states
• These states:
• Have names (called discriminators)
• Can be inspected with a match expression
• Can optionally hold any value type specified
• Can be created by specifying the discriminator first,

followed by an expression that evaluates to its type.

type rank =
Ace | King | Queen | Jack | Num of int

Extending Variants

• What if the type specified by a discriminator was
the same type as the variant?

type magic =
Nothing | Something of magic

Valid values could be:
• Nothing
• Something (Nothing)
• Something (Something (Something (Nothing)))

Recursive Types

• A type is recursive if in its implementation it
specifies its own type as a storage unit.
• In OCaml, this means that the type is used as a value

type holder in one or more discriminators

type t = N | S of t

• What are some types you’ve worked with in other
classes that might be recursive?

Lists

OCaml lists are recursive!

type 'a lst =
Nil | Cons of 'a * 'a lst

(* Note: Not “real” OCaml *)
let (::) elem rest = Cons (elem, rest)
let [] = Nil

Natural Numbers

type nat = Zero | Succ of nat

We can model all natural (>= 0) numbers!

How can we represent 0?
1?
2?
10?

Natural Numbers

type nat =
Zero

| Succ of nat

Recursive Types => Recursive Functions!

let rec int_of_nat x =
match x with
Zero ->

| Succ n ->

Natural Numbers

type nat =
Zero

| Succ of nat

Recursive Types => Recursive Functions!

let rec int_of_nat x =
match x with
Zero ->

| Succ n ->

Recursive

Base

Natural Numbers

type nat =
Zero

| Succ of nat

Recursive Types => Recursive Functions!

let rec int_of_nat x =
match x with
Zero -> 0

| Succ n -> 1 + (int_of_nat n)

Natural Numbers

type nat =
Zero

| Succ of nat

Recursive Types => Recursive Functions!

let rec nat_of_int n =
if n == 0 then

else

Natural Numbers

type nat =
Zero

| Succ of nat

Recursive Types => Recursive Functions!

let rec nat_of_int n =
if n == 0 then
Zero

else
Succ (nat_of_int (n – 1))

Natural Numbers: Addition

type nat =
Zero

| Succ of nat

let rec plus a b = (* Ideas? *)

Natural Numbers: Addition

type nat =
Zero

| Succ of nat

let rec plus a b =
match b with
Zero -> a

| Succ b' -> Succ (plus a b')

Natural Numbers: Multiplication

type nat =
Zero

| Succ of nat

let rec times a b = (* Ideas? *)

Natural Numbers: Multiplication

type nat =
Zero

| Succ of nat

let rec times a b =
match b with
Zero -> Zero

| Succ b' -> plus a (times a b')

List Operations

(* return the length of a list *)
let rec length l =

List Operations

(* return the length of a list *)
let rec length l =
match l with
[] -> 0

| _::l' -> 1 + (length l')

List Operations

(* return the max element of a list *)
let rec max l =

List Operations

(* return the max element of a list *)
let rec max l =
let rec helper v lst =
match lst with
[] -> v

| e::l' ->
helper (if e > v then e else v) l'

in
let e::l' = l in
helper e l'

List Operations

(* adds all elements of l2 to the end
of l1, keeping elements in order *)

let rec append l1 l2 =

List Operations

(* adds all elements of l2 to the end
of l1, keeping elements in order *)

let rec append l1 l2 =
let rec helper a b =
match b with
[] -> a

| e::b' -> helper (e::a) b'
in
rev (helper (rev l1) l2)

Trees

• How can we represent a binary tree?

type node =

Trees

• How can we represent a binary tree?

type node =
Node of int * node * node

| Null

Trees: Sum of All Nodes

type node =
Node of int * node * node

| Null

let rec sum n =

Trees: Sum of All Nodes

type node =
Node of int * node * node

| Null

let rec sum n =
match n with

Node (v,l,r) -> v + (sum l) + (sum r)
| Null -> 0

Expressions

• I want to write a calculator!

• 4.0 + 2.9 ==> 6.9
• 512 - 92 ==> 420
• (4.0 + 2.9) * (512 - 92) - 878 ==> 2020

What type should I use for expr?

Expressions

type expr =
Num of float

| Add of expr * expr
| Sub of expr * expr
| Mul of expr * expr
| Div of expr * expr

Evaluating Expressions?

let rec eval e =
match e with
Num x ->

| Add (a,b) ->
| Sub (a,b) ->
| Mul (a,b) ->
| Div (a,b) ->

Evaluating Expressions?

let rec eval e =
match e with
Num x -> x

| Add (a,b) -> (eval a) +. (eval b)
| Sub (a,b) -> (eval a) -. (eval b)
| Mul (a,b) -> (eval a) *. (eval b)
| Div (a,b) -> (eval a) /. (eval b)

String Representation?

let rec string_of_expr e =
match e with
Num x ->

| Add (a,b) ->
| Sub (a,b) ->
| Mul (a,b) ->
| Div (a,b) ->

String Representation?

let rec soe e =

match e with

Num x -> string_of_float x
| Add (a,b) -> "(" ^ (soe a) ^ "+" ^ (soe b) ^ ")"

| Sub (a,b) -> "(" ^ (soe a) ^ "-" ^ (soe b) ^ ")"
| Mul (a,b) -> "(" ^ (soe a) ^ "*" ^ (soe b) ^ ")"

| Div (a,b) -> "(" ^ (soe a) ^ "/" ^ (soe b) ^ ")"

