
OCaml: Folding
Programming Languages

William Killian
Millersville University

OCaml Tour

• Types, Values, and Expressions
• Bindings
• Strong Typing + Type Inference
• Functions + Tail Recursion
• Pattern Matching
• Lists, Tuples, Strings
• Variants + Recursive Types
• Folding ß We are now here

List Operations

Three Major Classes

• Transforming elements
map

• Removing elements
filter

• Combining elements
fold

List Operations: map

Type Signature
('a -> 'b) -> 'a list -> 'b list
function list return

Usage
List.map fn lst

Description
Calls fn on each element of lst
[fn x1; fn x2; fn x3; ...]

map examples

List.map (fun x -> x*x) [1; 2; 3; 4; 5]

List.map string_of_float [3.14; 2.78; 3.30]

List.map (fun (a,b) -> (b,a)) [(2,1);(3,4);(5,6)]

List Operations: filter

Type Signature
('a -> bool) -> 'a list -> 'a list
predicate list return

Usage
List.filter pred lst

Description
Calls fn on each element of lst, only
keeping elements who satisfy the predicate

filter examples

List.filter (fun x -> x mod 2 <> 0) [1; 2; 3; 4]

List.filter (fun x -> x > 10) [1; 330; 2020; 30]

List.filter (function Some _ -> true | _ -> false)

[None; Some 5; None; None; Some 2; Some 1]

List Operations: fold_left

Type Signature
('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
function init list return

Usage
List.fold_left fn init b

Description
Calls combiner on init + each element
fn (... fn (fn init b1) b2 ... bN)

fold_left examples

List.fold_left (+) 0 [1; 2; 3; 4]

List.fold_left (^) "" ["a"; "b"; "c"; "d"]

List.fold_left (fun acc x -> x :: acc) [] [1; 2; 3; 4]

List Operations: fold_right

Type Signature
('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
function list init return

Usage
List.fold_right fn a init

Description
Calls combiner on init + each element
fn a1 (fn a2 (... fn aN b))

fold_right examples

List.fold_right (+) [1; 2; 3; 4] 0

List.fold_right (^) ["a"; "b"; "c"; "d"] ""

List.fold_right (List.cons) [1; 2; 3; 4] []

List module (subset 1/2)

rev : 'a list -> 'a list

Reverse a list (Tail Recursive)

concat : 'a list list -> 'a list
Concatenate list of lists

map : ('a -> 'b) -> 'a list -> 'b list
Apply function to each element

mapi : (int -> 'a -> 'b) -> 'a list -> 'b list

Same as above (with index) (Tail Recursive)
rev_map : ('a -> 'b) -> 'a list -> 'b list

Same as map, but reverses output (Tail Recursive)

List module (subset 2/2)

iter : ('a -> unit) -> 'a list -> unit

Call a function on each element (Tail Recursive)

iteri : (int -> 'a -> unit) -> 'a list -> unit
Same as above (with index) (Tail Recursive)

mem : 'a -> 'a list -> bool
Search for value in a list (Tail Recursive)

filter : ('a -> bool) -> 'a list -> 'a list

Returns a list with all elements that satisfy the predicate

Everything is a Fold

List.rev is a fold_left

let rev lst =
let combiner acc x =

x :: acc
in
let init = []
in
List.fold_left combiner init lst

List.concat is a fold_left

let concat lst =
let combiner = acc x =

acc @ x
in
let init = []
in
List.fold_left combiner init lst

List.map is a fold_right

let map fn lst =
let combiner x acc =

fn x :: acc
in
let init = []
in
List.fold_right combiner lst init

List.mapi is a fold_right

let mapi fn lst =
let combiner x (i, acc) =

(i + 1, fn i x :: acc)
in
let init = (0, [])
in
snd (List.fold_right combiner lst init)

List.rev_map is a fold_left

let rev_map fn lst =
let combiner acc x =

fn x :: acc
in
let init = []
in
List.fold_left combiner init lst

List.iter is a fold_left

let iter fn lst =
let combiner acc x =

fn x
in
let init = ()
in
List.fold_left combiner init lst

List.iteri is a fold_left

let iteri fn lst =
let combiner (i, acc) x =

(i + 1, fn i x)
in
let init = (0, ())
in
snd (List.fold_left combiner init lst)

List.mem is a fold_left

let mem value lst =
let combiner acc x =

if acc then acc else value = x
in
let init = false
in
List.fold_left combiner init lst

List.filter is a fold_right

let filter pred lst =
let combiner x acc =

if pred x then x :: acc else acc
in
let init = []
in
List.fold_right combiner lst init

fold_right is a fold_left

fold_right could be afold_left

let fold_right fn lst init =
let lst' = rev lst
in
let fn' acc x = fn x acc
in
fold_left fn' init lst'

How can we implement
fold_left and fold_right?

fold_left

let rec fold_left fn init lst =

fold_left

let rec fold_left fn init lst =
match lst with
| [] -> init
| x::lst' ->
fold_left fn (fn init x) lst'

fold_right

let rec fold_right fn lst init =

fold_right

let rec fold_right fn lst init =
match lst with
| [] -> init
| x::lst' ->
fn x (fold_right fn lst' init)

OCaml Tour

• Types, Values, and Expressions
• Bindings
• Strong Typing + Type Inference
• Functions + Tail Recursion
• Pattern Matching
• Lists, Tuples, Strings
• Variants + Recursive Types
• Folding ß We were here

OCaml Tour

You are Functional Programming Masters

Only ONE
more lab

Fin
So long and thanks for all the ::

