
Logic
Programming
Programming Languages
William Killian
Millersville University

Outline

• Predicate Calculus
• Theorem Proving
• Logic Programming
• Case Study: Prolog
• Examples
• Sudoku
• N-Queens

Logic Programming

• Expressed in a form of symbolic logic

• Applies logical inferencing to produce results

• Key insight: Declarative (instead of Procedural)
• Specification of results are stated
• Rather than the procedures which can produce them

Predicate Calculus

Preposition
A logical statement that may or may not be true
• Consists of objects and relationships
Predicate Calculus
Logic founded upon prepositions, variables, constants,
and quantifiers
• Variable – a symbol that can represent different

objects at different times
• Constant – a symbol that represents one object
• Quantifier – a countable amount (for all, there exists)

Propositions == Compound Terms

• Atomic propositions consist of compound terms
• Compound term describes a relation, but is often

expressed as a function (can be written as a table)
• Two parts to a compound term
• Functor – function symbol that names the relationship
• Parameters – ordered list (akin to a tuple)

• Examples:
student(jon)
like(beth, macOS)
like(chris, windows)
like(will, linux)

Proposition Forms

• Propositions can be stated in two forms:
• Fact – proposition is assumed to be true
• Query – truth of proposition is to be determined

• Compound Proposition
• Have two or more atomic propositions
• Propositions are connected by operators

Logical Operators

Name Symbol Example Meaning

negation ¬ ¬ a not a

conjunction Ç a Ç b a and b

disjunction È a È b a or b

equivalence º a º b a is equivalent
to b

implication É
Ì

a É b
a Ì b

a implies b
b implies a

Quantifiers

Name Example Meaning

universal "X.P For all X, P is true

existential $X.P There exists a value of X
such that P is true

Clausal Form

• We will use a standard form for all propositions
• Antecedent
• Right side
• What must be true

• Consequent
• Left side
• What could be true

• Example
• B1 È B2 È … È Bn Ì A1 Ç A2 Ç … Ç Am
• means if all the As are true, then at least one B is true

Theorem Proving

• Given known axioms an theorems…
We should be able to discover new theorems!

• Resolution
• A principle of inference that allows inferred propositions

to be computed from given propositions
• Unification

• Finding values for variables in propositions
• Instantiation

• Assigning temporary values to variables to allow unification
• After instantiation: if matching fails, we may backtrack

Logic Programming

• Declarative
• Non-Procedural

Programs do not state how to do something!

… Programs state what the result will be.

Logic Programming: Sorting

• Describe the characteristics of a sorted list, rather than
the process of rearranging a list

sort(old_list, new_list) Ì
permute (old_list, new_list) Ç sorted (new_list)

sorted (list) Ì
"j such that 1 £ j < n, list(j) £ list (j+1)

Prolog

Prolog

Predominately used in two fields/areas (origin)
• Natural language processing
• Automated theorem proving
Important Terms:
• Term constant, variable, or structure
• Constant atom or integer
• Atom consists of either:

• A string of letters, digits, and underscores (starts with a-z)
• A string of printable ASCII characters delimited by ‘

Terms

Variable
• Any string of letters, digits, or underscores starting

with a Capital letter
Instantiation
• Binding of a variable to a concrete value
• May be a temporary binding
Structure
• Represents one atomic proposition

functor(parameter, list)

Facts

Facts are used (in part) to define hypotheses

Known as a “Headless Horn” clause

female(amy).
female(stephanie).
male(will).
father(larry, amanda).

Rules

Rules are used (in part) to define hypotheses

Known as a “Headed Horn” clause
Right side: antecedent (if part) – can be a conjunction
Left side: consequent (then part) – single term

ancestor(mary,shelley):- mother(mary,shelley).

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

Goals

For theorem proving, we may just want to learn or
derive something interesting (via proving or disproving)

“Headless Horn” notation:
man(fred)

Can also generalize with variables and propositions
father(X, mike)
female(Y)

Approaches to Solving

• Matching is the process of proving a proposition
• Proving a subgoal is called satisfying the subgoal
• Bottom-up resolution, forward chaining
• Begin with facts and rules of database and attempt to find

sequence that leads to goal
• Works well with a large set of possibly correct answers

• Top-down resolution, backward chaining
• Begin with goal and attempt to find sequence that leads to

set of facts in database
• Works well with a small set of possibly correct answers

• Prolog implementations use backward chaining

Arithmetic

Integer variables and integer operations are supported

is operator
D is B * B – 4 * A * C.

Illegal to do variable reassignment!

Sum is Sum + X.

Arithmetic Example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),

time(X,Time),
Y is Speed * Time.

distance(chevy, Chevy_Distance).

Lists

• Lists is a sequence of any number of elements
• Elements can be atoms, atomic propositions, or

other terms (even other lists!)

[apple, orange, pear, peach]

[] – empty list
[X | Y] – list with head X and tail Y

List Operations - Append

append([], List, List).
append([Head | L1], L2, [Head | Out]) :-

append(L1, L2, Out).

List Operations - Reverse

reverse([], []).
reverse([Head | Tail], List) :-
reverse(Tail, Result),

append(Result, [Head], List).

List Operations - Member

member(Elem, [Elem | _]).
member(Elem, [_ | List]) :-

member(Elem, List).

Underscore is an anonymous variable

Deficiencies of Logic Programming

Resolution Order Control
• The order of attempted matches is non-deterministic and all

matches would be attempted concurrently

The Closed-World Assumption
• The only knowledge is what is in the database

The Negation Problem
• Anything not stated in the database is assumed to be false

Examples

N-Queens

Problem:
Provided an N x N chess board, place N queens such that
none of them can “take” another (for those with a chess
background).

For those without a chess background: place N queens on
an N x N chess board such that there is only one queen per
row, one queen per column, and no two queens’ difference
in rows equals their difference in columns.

N-Queens

https://swish.swi-prolog.org/example/queens.pl
Traditional Prolog implementation
• Requires a full board definition
• Iteratively makes all constraints one queen at a time
• Relies on extensive list processing operations

https://swish.swi-prolog.org/example/clpfd_queens.pl
Prolog Implementation relying on CLP(FD) library
• Constraint Logic Programming over Finite Domain
• Replaces lists with domains and special operations

https://swish.swi-prolog.org/example/queens.pl
https://swish.swi-prolog.org/example/clpfd_queens.pl

N-Queens

n_queens(N, Qs) :-
length(Qs, N), Qs ins 1..N, safe_queens(Qs).

safe_queens([]).
safe_queens([Q|Qs]) :-

safe_queens(Qs, Q, 1), safe_queens(Qs).

safe_queens([], _, _).
safe_queens([Q|Qs], Q0, D0) :-

Q0 #\= Q, abs(Q0 - Q) #\= D0, D1 #= D0 + 1,
safe_queens(Qs, Q0, D1).

Sudoku

Problem:
Given a 9x9 grid subdivided
into 3x3 “houses”, place the
values 1 through 9 such that
• Each row contains each

value exactly once
• Each column contains

each value exactly once
• Each house contains each

value exactly once

Sudoku

https://swish.swi-prolog.org/example/clpfd_sudoku.pl
Prolog Implementation relying on CLP(FD) library

Checking Houses:
blocks([], [], []).
blocks([A,B,C|Bs1],

[D,E,F|Bs2],
[G,H,I|Bs3]) :-
all_distinct([A,B,C,D,E,F,G,H,I]),
blocks(Bs1, Bs2, Bs3).

https://swish.swi-prolog.org/example/clpfd_sudoku.pl

Sudoku

https://swish.swi-prolog.org/example/clpfd_sudoku.pl
Prolog Implementation relying on CLP(FD) library

Checking Houses:
blocks([], [], []).
blocks([A,B,C|Bs1],

[D,E,F|Bs2],
[G,H,I|Bs3]) :-
all_distinct([A,B,C,D,E,F,G,H,I]),
blocks(Bs1, Bs2, Bs3).

https://swish.swi-prolog.org/example/clpfd_sudoku.pl

Sudoku

Sudoku Solver:
sudoku(Rows) :-

length(Rows,9),
maplist(same_length(Rows),Rows),
append(Rows,Vs), Vs ins 1..9,
maplist(all_distinct,Rows),
transpose(Rows,Columns),
maplist(all_distinct,Columns),
Rows = [A,B,C,D,E,F,G,H,I],
blocks(A,B,C), blocks(D,E,F), blocks(G,H,I).

Sudoku

Problem Definition
problem(1, [[_,_,_, _,_,_, _,_,_],

[_,_,_, _,_,3, _,8,5],

[_,_,1, _,2,_, _,_,_],

[_,_,_, 5,_,7, _,_,_],

[_,_,4, _,_,_, 1,_,_],
[_,9,_, _,_,_, _,_,_],

[5,_,_, _,_,_, _,7,3],

[_,_,2, _,1,_, _,_,_],

[_,_,_, _,4,_, _,_,9]]).

Sudoku

Problem Solution
problem(1, Rows), sudoku(Rows).

