Language
Design and
Evolution

Programming Languages
William Killian
Millersville University

What is a Language?

lan-guage

/'laNGgwij/
noun

1. the method of human communication, either

spoken or written, consisting of the use of words
in a structured and conventional

2. asystem of symbols and rules for writing
programs or algorithms

Linguistics Definition

the method of human communication, either spoken
or written, consisting of the use of words in a
structured and conventional way

* Does “spoken” make sense for computers?

* Is “human communication” feasible with computer
programs?

Computer Science Definition

a system of tokens and rules for writing programs or
algorithms

e What tokens do we use?

e What rules do we have?

Tokens

* In the domain of language design, we will refer to
each word as a unique token

* Tokens can come in any order or be anything, but
some tokens might have some special meaning

e Usually alphanumeric, numeric, or symbolic

What tokens might we have in Java? C++?

Keywords

* Keywords are a type of Token
* Usually reserved by the language
* Only be used in specific locations

Examples:
int inJava
void in C++
const in Javascript Others?
def in Python
let inOCaml

Symbols

* Symbols are another type of Token
e Usually combinations of punctuation characters
e Often used to indicate special operations

Examples:

in Java
in OCaml

. in Javascript
<< in C++

v

Others?

ldentifiers

* |dentifiers refer to specific entities of our program
e Creating a new variable or function

* Accessing a data member

e Calling a function

e Using a library

Rules

e Within language design, we will refer to the order
in which symbols can be structured as rules

 Two main types of rules:

e Syntactic Rules
The order of all symbols must be well-formed

* Semantic Rules
The meaning of all symbols must be well-formed

 We will talk about these in detail later in the class

Syntax Rules (in English)

The boy went to school.

article noun verb prep. noun

\/ prepositional phrase

noun phrase

‘\\\\\\\\\y——’—————:fifgghrase

sentence

Syntax Rules (in Java)

class := CLASS ID classArg™ LBRACE defs* RBRACE

classArg := (IMPLEMENTS | EXTENDS) namelist

namelist :=ID [, namelist]*

defs = [visibility] [STATIC] (varDef SEMI| funDef)

visibility := (PUBLIC| PROTECTED | PRIVATE)

varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN ...

paramlist := varDef [, paramList]*

type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

CAPS means terminal (symbol)

Syntax Rules (in Java)

italicized means rule
* - zero or more

[optional]
class := CLASS ID classArg™ LBRACE defs* RBRACE

classArg := (IMPLEMENTS | EXTENDS) namelist
namelist :=ID [, namelist]*

defs = [visibility] [STATIC] (varDef SEMI| funDef)
visibility := (PUBLIC| PROTECTED | PRIVATE)
varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN ...

(choicel|choice2)

paramlist := varDef [, paramList]*
type = (primitive | ID)
primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Syntax Rules (in Java)

class := CLASS ID * LBRACE defs* RBRACE
:= (IMPLEMENTS | EXTENDS) namelist
namelist :=ID [, namelist]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)
visibility := (PUBLIC| PROTECTED | PRIVATE)
varDef := type ID
funDef := type ID LPAREN [paramList] RPAREN ...
paramlist := varDef [, paramList]*
type = (primitive | ID)
primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

What are the tokens in the shown rules?

Syntax Rules (in Java)

class := CLASS ID * LBRACE defs* RBRACE
:= (IMPLEMENTS | EXTENDS) namelist
namelist :=ID [, namelist]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)
visibility := (PUBLIC| PROTECTED | PRIVATE)
varDef := type ID
funDef := type ID LPAREN [paramList] RPAREN ...
paramlist := varDef [, paramList]*
type = (primitive | ID)
primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Where are the rules?

Syntax Rules (in Java)

class := CLASS ID * LBRACE defs* RBRACE
:= (IMPLEMENTS | EXTENDS) namelist
namelist :=ID [, namelist]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)
visibility := (PUBLIC| PROTECTED | PRIVATE)
varDef := type ID
funDef := type ID LPAREN [paramList] RPAREN ...
paramlist := varDef [, paramList]*
type = (primitive | ID)
primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Exercise: Make a “Point” class with two public
members of type double: x and y?

Rosetta Code Examples (Homework)

 What problems did you investigate?

* What languages did you see?

* What languages DON’T you want to see again?

Language Transformation

* Computers understand binary
e Sequence of 0's & 1’s
e See: Computer Architecture

* Humans understand languages
* See: Programming Languages

O’sand 1’s

S —— ? ———
Language . (binary)

We need a tool to translate our language to binary

Compilers

* Input:
e A program (sequence of instructions) written in a well-
defined, predictable language

* Output:

* A sequence of bits that a computer architecture can
execute

e Task:

* Compilers translate from an input language to an output
language without loss of functionality

 Mathematically correct

The First Programming Language

Discussion:

* What year do you think the first programming
language came out?

e What did it look like?
e What did it run on?

0 0 @ ©

go slower go faster

Before 1930 - 1940 - After
1930 1940 1950 1950

The First Programmtretangdage

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)

- | | Data. | Working Variales.
-.2 .E ’ w, v, | oavy | ovy ov, | oov, | owy | ow, | 0w, | ovy, oy, Via O e 2 | Wa | Vo
£ | £ [vustes| voritis | Indicston o (2 ol QISIROR) Ol QRS | O Q 9 C 249
vy | change in the]
B et o recciving | O o any Statement of Results. (R S0 FTt e i o |0 0 (S 0 0 0 £EZ 0
1] i (P O ‘ A R T SRS O] (SO [R () 0 0 0 SSEl o0
[|EEOOo000|0| N\
[= | l
| ¥
1L v v iV 1, Wl {2 Ty 2 | n |2 [2a]| 2n '
3| — fv, —v, v, .. ::: :f:: 20 —1 |
S |+ V4V BV] {::: :R’: 2n41 ;
2n—1
4| BV v vy, 0 | o | 2Zn41
= [| 1 2a—1
5 | = v, =1y, BV, 2 | FETES
Bl = PV —2Vy,[tVis Joase \ 0 - % . ;%;—: = A,
i .
; 1y, =1V
7 | = vy —tv, vy ... {,v:=.v: S e s s
8 |+ [V, 4oV, IV; -] 2 | 2 [
& 9 | = vy, BV, 2n 2 i 2.7",, Ay
2
Lo | x vy xav, vy, T": A, B,.2;=B.A. B,
LI 5 2 L TR d =40 . e | e aotile . ¢ Ercem 0 {_! 2n-1 B 2n
g Wyp=2Vyy ‘ R
2 | — =1V, (Vi e {Wnzioti=u—2(=2) . 1 1 Wy
E (l r=ive =2v, [tV eooee. o) =22n =1 e O 1 | w 2n—1
I v, v, oy =2l =8.,, S, e |) prealils
i 2n—1
h A | vy, vy =L3— w 1Bn=—1] 3 2"3__1
i 2n 2n—1 =
16| [Uscfvg xavylevy, e, = p—— . ! “ 0 | | o Cn g
[] (A | P P R =2n=2 i L 25 — 2
83| +pV, 29, BY; el =X 3 E 7 S RUIBCRAR e I B e e " 4 [
i 2,2 i 2n 2n—1 2n—2
9 ||| v, oy, sy, =3V, } =‘"4— - q b e | o 2n—2f 4 &4—2‘ {?' = TR
W, =0V, 1| 21 24—1 2a—2 =4s
X[V, XV, {c\r“=:v"} e - Ay | - 0 {
1Wp= v,,} 2n 2n—1 22-2_ p a |
X[Vaxev,, | {:V|:=:vu =By e By e e | e [|| e 0 By As | e
V0=V, 4 [A
) S {:3::_3:: o e B A1 By A g o e LU S : 0 {A, BT w.A,} i
i e RO U TES DS 5 | £ (R | l e | ot s | el Bt D !
i Here follows a repetition of Operations thirteen to twenty-three. -
q . 4y =0y]
‘I‘i VoV Vo e {:¥:='-‘{; e R O U ST R) D N s SO b rard |4 =D v
! | -v‘ g W = W=l s =S 1| | | |0 0
& V) VIV e 1o = 9V, |by a Variable-card.
SV, = OV, |by a Variable card.

Ada Lovelace, 1843

The First Programming Language
Created

Plankalktil (1942-1945)
 Konrad Zuse

P1 max3 (Vo[:8.0],V1[:8.0],V2[:8.0]) > RO[:8.0]
max(Vo[:8.0],V1[:8.0]) » Z1[:8.0]
max(Z1[:8.0],V2[:8.0]) > RO[:8.0]

END

P2 max (vVo[:8.0],V1[:8.0]) » RO[:8.0]

Ve[:8.0] » Z1[:8.0]

(Z1[:8.0] < V1[:8.0]) » V1[:8.0] » Z1[:8.0]
Z1[:8.0] » RO[:8.0]

END

function max3 (in a linear transcription) that calculates the maximum of three variables

The First Programming Language
Commercial

FORTRAN (1954)
e John Backus + IBM

C AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION
C INPUT - TAPE READER UNIT 5, INTEGER INPUT
OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING
READ INPUT TAPE 5, 501, IA, IB, IC
501 FORMAT (3I5)
IA, IB, AND IC MAY NOT BE NEGATIVE OR ZERO
FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE
MUST BE GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, T00
~. IF (IA) 777, 777, 701
701 IF (IB) 777, 777, 702
702 IF (IC) 777, 777, 703
703 IF (IA+IB-IC) 777, 777, 704
704 IF (IA+IC-IB) 777, 777, 705
705 IF (IB+IC-IA) 777, 777, 799
" 777 STOP 1
C USING HERON'S FORMULA WE CALCULATE THE
C AREA OF THE TRIANGLE
799 S = FLOATF (IA + IB + IC) / 2.0
AREA = SQRTF(S * (S — FLOATF(IA)) * (S — FLOATF(IB)) x
+ (S - FLOATF(IC)))
WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA
601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,
+ 13H SQUARE UNITS)
STOP
END

a0

0O 00

-l Sl
KN

What Was Your First
Programming Language?

History of Programming Languages

Give a
boring lecture
on the history

of programming
languages

In-class
exercise

History of Programming Languages

Split up into four groups (randomly)
* Group 1: 1960 — 1980

* Group 2: 1980 — 1995

* Group 3: 1995 -2010

* Group 4: 2010 — Present

History of Programming Languages

1. Spend approximately 20 minutes in your group
searching the internet (Google, Wikipedia).

2. ldentify:

 What languages seem important (that you’ve heard of)?
 What is the “coolest” language?

 What is the origin of the language?

e Research (PhD)
* Industry (IBM, Kodak, HP, Apple, Google, Microsoft, etc)
* Hobby (someone’s fun project)

* Trends of languages during the time period

History of Programming Languages

3. Regroup after 20 minutes

4. Have each group give a short presentation with
your findings
* Don’t worry -- I'll help you out

