Language Design and Evolution

Programming Languages

William Killian Millersville University

What is a Language?

lan·guage

/ˈlaNGgwij/

noun

- the method of human communication, either spoken or written, consisting of the use of words in a structured and conventional
- 2. a system of symbols and rules for writing programs or algorithms

Linguistics Definition

the method of human communication, either spoken or written, consisting of the use of words in a structured and conventional way

- Does "spoken" make sense for computers?
- Is "human communication" feasible with computer programs?

Computer Science Definition

a system of tokens and rules for writing programs or algorithms

- What tokens do we use?
- What rules do we have?

Tokens

- In the domain of <u>language design</u>, we will refer to each word as a unique **token**
- Tokens can come in any order or be anything, but some tokens might have some special meaning
- Usually alphanumeric, numeric, or symbolic

What tokens might we have in Java? C++?

Keywords

- *Keywords* are a type of Token
- Usually reserved by the language
- Only be used in specific locations

```
Examples:

int in Java

void in C++

const in Javascript

def in Python

let in OCaml
```


Symbols

- Symbols are another type of Token
- Usually combinations of punctuation characters
- Often used to indicate special operations

Examples:

- == in Java
- > in OCaml
- ... in Javascript
- **<<** in C++

Others?

Identifiers

- Identifiers refer to specific entities of our program
- Creating a new variable or function
- Accessing a data member
- Calling a function
- Using a library

Rules

- Within <u>language design</u>, we will refer to the order in which *symbols* can be structured as *rules*
- Two main types of rules:
 - Syntactic Rules

The *order* of all symbols must be well-formed

• Semantic Rules

The *meaning* of all symbols must be well-formed

• We will talk about these in detail later in the class

Syntax Rules (in English)

class := CLASS ID classArg* LBRACE defs* RBRACE

classArg := (IMPLEMENTS|EXTENDS) nameList

```
nameList := ID [, nameList]*
```

```
defs := [visibility] [STATIC] (varDef SEMI| funDef)
```

visibility := (PUBLIC | PROTECTED | PRIVATE)

varDef := type ID

```
funDef := type ID LPAREN [paramList] RPAREN ...
```

```
paramList := varDef [, paramList]*
```

type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

CAPS means terminal (symbol)

Syntax Rules (in Java)

italicized means rule

* - zero or more

[optional]

(choice1|choice2)

class := CLASS ID *classArg** LBRACE *defs** RBRACE *classArg* := (IMPLEMENTS | EXTENDS) *nameList* nameList := ID [, nameList]* defs := [visibility] [STATIC] (varDef SEMI | funDef) visibility := (PUBLIC | PROTECTED | PRIVATE) varDef := type **ID** funDef := type ID LPAREN [paramList] RPAREN ... paramList := varDef [, paramList]* type := (primitive | ID) primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

class := CLASS ID *classArg** LBRACE *defs** RBRACE

classArg := (IMPLEMENTS|EXTENDS) nameList

```
nameList := ID [, nameList]*
```

```
defs := [visibility] [STATIC] (varDef SEMI| funDef)
```

```
visibility := (PUBLIC | PROTECTED | PRIVATE)
```

varDef := type ID

```
funDef := type ID LPAREN [paramList] RPAREN ...
```

```
paramList := varDef [, paramList]*
```

type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

What are the tokens in the shown rules?

class := CLASS ID classArg* LBRACE defs* RBRACE

classArg := (IMPLEMENTS | EXTENDS) nameList

nameList := ID [, nameList]*

defs := [visibility] [STATIC] (varDef SEMI| funDef)

visibility := (PUBLIC | PROTECTED | PRIVATE)

varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN ...

paramList := varDef [, paramList]*

type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Where are the rules?

class := CLASS ID *classArg** LBRACE *defs** RBRACE

classArg := (IMPLEMENTS | EXTENDS) nameList

```
nameList := ID [, nameList]*
```

```
defs := [visibility] [STATIC] (varDef SEMI| funDef)
```

visibility := (PUBLIC | PROTECTED | PRIVATE)

varDef := type ID

```
funDef := type ID LPAREN [paramList] RPAREN ...
```

```
paramList := varDef [, paramList]*
```

type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Exercise: Make a "Point" class with two public members of type double: x and y?

Rosetta Code Examples (Homework)

• What problems did you investigate?

• What languages did you see?

• What languages **DON'T** you want to see again?

Language Transformation

- Computers understand binary
 - Sequence of 0's & 1's
 - See: Computer Architecture
- Humans understand *languages*
 - See: Programming Languages

We need a *tool* to translate our language to binary

Compilers

- Input:
 - A program (sequence of instructions) written in a welldefined, predictable language
- Output:
 - A sequence of bits that a computer architecture can execute
- Task:
 - Compilers translate from an <u>input language</u> to an <u>output</u> <u>language</u> without loss of functionality
 - Mathematically correct

The First Programming Language

Discussion:

- What year do you think the first programming language came out?
- What did it look like?
- What did it run on?

The First Programming Language

	Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)																					
1	1.					Data.									Working Variables.			Result Variables.				
Number of Operation	Nature of Operation	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.			$\begin{bmatrix} {}^{1}V_{3} \\ \bigcirc \\ 0 \\ 0 \\ 4 \\ \hline n \end{bmatrix}$	⁰ V ₄ O 0 0 0	⁰ V ₅ O 0 0 0 0	⁰ V ₆ ⁰ 0 0 0	⁰ V ₇ 0 0 0 0	●Vs ○ 0 0 0 0	⁰ V ₉ O 0 0 0 0	^o V ₁₀ O 0 0 0		^e v ₁₂ O 0 0 0	0 0 0 0 0	$\begin{bmatrix} B_1 \text{ in a} \\ \text{decimal} O_{\underline{12}} \\ \text{fraction.} \end{bmatrix}$	$\begin{bmatrix} \mathbb{F} \\ \mathbb{F} \end{bmatrix} \begin{array}{c} B_{3} \text{ in a} \\ \text{decimal} O_{12} \\ \text{fraction.} \\ \end{array}$	E Bs in a decimal On fraction.	^o V ₂₁ O 0 0 0 B ₇
1 2 3 4 5	× - + + +	${}^{1}V_{2} \times {}^{1}V_{3}$ ${}^{1}V_{4} - {}^{1}V_{1}$ ${}^{1}V_{5} + {}^{1}V_{1}$ ${}^{2}V_{5} \div {}^{2}V_{4}$ ${}^{1}V_{11} \div {}^{1}V_{2}$	V_{4}, V_{5}, V_{6} V_{4}, \dots, V_{6} V_{5}, \dots, V_{6} V_{11}, \dots, V_{11} V_{11}, \dots, V_{11}	$\begin{cases} V_{V_{2}}^{V} = 1V_{2} \\ V_{V_{3}}^{V} = 1V_{3} \\ 1V_{4}^{V} = 2V_{4} \\ 1V_{1}^{V} = 1V_{1} \\ 1V_{5}^{V} = 2V_{5} \\ 1V_{1}^{V} = 1V_{1} \\ 1V_{2}^{V} = 0V_{5} \\ 2V_{4}^{V} = 0V_{4} \\ 1V_{11}^{V} = 2V_{11} \\ 1V_{2}^{V} = 1V_{2} \\ 1V_{2}^{V} = 0V_{4} \\ \end{cases}$	$= 2n$ $= 2n - 1$ $= 2n + 1$ $= \frac{2n - 1}{2n + 1}$ $= \frac{2n - 1}{2n - 1}$ $= \frac{2 - 1}{2n - 1}$ $= \frac{2 - 2n - 1}{2n - 1}$	 1 1 	2 2	n 	2n 2n-1 0 	2 n 2 n+1 0 	2 n					$\frac{2n-1}{2n+1} \\ \frac{1}{2}, \frac{2n-1}{2n+1} \\ \frac{1}{2}, \frac{2n-1}{2n+1} \\ $		1 2 - 1				
6	-	$V_{13} - V_{11}$ $V_{3} - V_{11}$	¹ V ₁₃ ¹ V ₁₀	$ \begin{cases} {}^{1}\mathrm{N}_{13} = {}^{1}\mathrm{V}_{13} \\ {}^{1}\mathrm{V}_{3} = {}^{1}\mathrm{V}_{3} \\ {}^{1}\mathrm{V}_{1} = {}^{1}\mathrm{V}_{1} \end{cases} \end{cases} $	$= -\frac{1}{2} \cdot \frac{1}{2n+1} = A_0 \dots \\ = n-1 (=3)$	1		 n							${n-1}$	0		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$				
8 9 10 11 12	+ ÷ × + -	${}^{1}V_{2} + {}^{0}V_{7}$ ${}^{1}V_{6} + {}^{1}V_{7}$ ${}^{1}V_{21} \times {}^{3}V_{11}$ ${}^{1}V_{12} + {}^{1}V_{13}$ ${}^{1}V_{10} - {}^{1}V_{1}$	¹ V ₇ ³ V ₁₁ ¹ V ₁₂ ² V ₁₃ ² V ₁₀	$\begin{cases} v_{1}^{2} = v_{1}^{2} \\ v_{1}^{2} = v_{1}^{2} \\ v_{11} = v_{11} \\ v_{11} = v_{11} \\ v_{12} = v_{12} \\ v_{13} = v_{13} \\ v_{10} = v_{10} \\ v_{1} = v_{1} \\ v_{11} \\ v_{12} = v_{10} \\ v_{11} \\ v_{12} \\ v_{11} \\ v_{12} \\ v_{11} \\ v_{12} \\ v_{11} \\ v_{12} \\ v_{11} $	= 2 + 0 = 2 = $\frac{2n}{2} = A_1$ = $B_1 \cdot \frac{2n}{2} = B_1 A_1$ = $-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}$ = $n - 2(=2)$	··· ··· ··· 1	2 				2 n 	2 2 		···· ···	 n - 2	$\frac{2n}{2} = \Lambda_1$ $\frac{2n}{2} = \Lambda_1$ \dots	$B_1 \cdot \frac{2n}{2} = B_1 A$	$\left\{ -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \right\}$	B1			
13 14 15 16 17 18 19 20 21 22 23	$ \begin{cases} - \\ + \\ + \\ + \\ + \\ + \\ + \\ - \\ \end{pmatrix} $	$\label{eq:response} \begin{split} ^{11} & v_6 = {}^{11} v_1 \\ ^{11} v_1 + {}^{11} v_7 \\ ^{21} v_6 + {}^{21} v_7 \\ ^{21} v_6 + {}^{21} v_7 \\ ^{11} v_1 + {}^{21} v_7 \\ ^{31} v_6 + {}^{31} v_7 \\ ^{31} v_6 + {}^{31} v_7 \\ ^{11} v_2 \times {}^{21} v_{11} \\ ^{12} v_{12} + {}^{21} v_{12} \\ ^{21} v_{12} + {}^{21} v_{12} \\ ^{21} v_{10} - {}^{11} v_1 \end{split}$	² V ₆ ² V ₇ ⁴ V ₁₁ ³ V ₆ ³ V ₇ ⁴ V ₁₁ ⁴ V ₁₁ ⁴ V ₁₁ ⁴ V ₁₁ ⁴ V ₁₁	$\begin{cases} 1V_0 = 2V_0 \\ 1V_1 = 2V_1 \\ 1V_1 = 2V_1 \\ 1V_1 = 2V_1 \\ 1V_2 = 2V_1 \\ 2V_0 = 2V_0 \\ 1V_2 = 2V_0 \\ 1V_1 = V_1 \\ 2V_0 = 2V_0 \\ 1V_1 = 1V_1 \\ 2V_0 = 2V_0 \\ 1V_1 = 1V_1 \\ 2V_0 = 2V_0 \\ 1V_1 = 2V_1 \\ 2V_0 = 2V_0 \\ 1V_1 = 2V_1 \\ 2V_1 = 2V_{12} \\ 1V_1 = 2V_{12} \\ 2V_1 = 2V_{12} \\ 2V_1 = 2V_{12} \\ 2V_1 = 2V_{12} \\ 2V_1 = 2V_{12} \\ 1V_1 = V_1 \\ 1$	$= 2n - 1$ $= 2 + 1 = 3$ $= \frac{2n - 1}{3}$ $= \frac{2n - 1}{3}$ $= 2n - 2$ $= 3 + 1 = 4$ $= \frac{2n - 2}{4}$ $\leq \frac{2n - 2}{2}$ $\leq \frac{2n}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{4} = A_3$ $= B_3 \cdot \frac{2n}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{4} = A_3$ $= A_0 + B_1 A_1 + B_2 A_3$ $= n - 3 (= 1)$			··· ··· ··· ···	···· ··· ··· ··· ··· ··· ··· ··· ···	····	2 n - 1 2 n - 1 2 n - 2 2 n - 2 2 n - 2 	3 3 4 4 of Ope	2n - 1 3 0 rations t	 2 n - 2 4 0 hirteen	 n - 3 to twent	$\begin{cases} \frac{2n}{2} \cdot \frac{2n-1}{3} \\ \begin{cases} \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \\ = \Lambda_3 \end{cases} \end{cases}$	B3 A3 0	$\left\{ \Lambda_3 + B_1 \Lambda_1 + E_5 \Lambda_3^* \right\}$		Ba	A PLANE AND A PLANE AND A	
24 25	+	"V ₁₃ +°V ₂	1 ¹ V ₂₄	$ \left\{ \begin{array}{l} {}^{4}\mathrm{V}_{13} = {}^{0}\mathrm{V}_{13} \\ {}^{0}\mathrm{V}_{24} = {}^{1}\mathrm{V}_{24} \\ {}^{1}\mathrm{V}_{1} = {}^{1}\mathrm{V}_{1} \\ {}^{1}\mathrm{V}_{3} = {}^{1}\mathrm{V}_{3} \\ {}^{4}\mathrm{V}_{6} = {}^{0}\mathrm{V}_{6} \\ {}^{6}\mathrm{V}_{7} = {}^{0}\mathrm{V}_{7} \end{array} \right. $	$= B_7$ $= n + 1 = 4 + 1 = 5$ by a Variable-card. by a Variable card.			$\left \begin{array}{c} \dots \\ n+1 \end{array}\right $			0	0		-								B ₇

Ada Lovelace, 1843

The First Programming Language Created

Plankalkül (1942-1945)

Konrad Zuse

```
P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) → R0[:8.0]
max(V0[:8.0],V1[:8.0]) → Z1[:8.0]
max(Z1[:8.0],V2[:8.0]) → R0[:8.0]
END
P2 max (V0[:8.0],V1[:8.0]) → R0[:8.0]
V0[:8.0] → Z1[:8.0]
(Z1[:8.0] < V1[:8.0]) → V1[:8.0] → Z1[:8.0]
Z1[:8.0] → R0[:8.0]
END
```

function **max3** (in a linear transcription) that calculates the maximum of three variables

The First Programming Language Commercial

FORTRAN (1954)

• John Backus + IBM

C AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION C INPUT – TAPE READER UNIT 5, INTEGER INPUT C OUTPUT – LINE PRINTER UNIT 6, REAL OUTPUT C INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING
READ INPUT TAPE 5, 501, IA, IB, IC
501 FORMAT (315)
C IA, IB, AND IC MAY NOT BE NEGATIVE OR ZERO
C FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE
C MUST BE GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, TOO
IF (IA) 777, 777, 701
701 IF (IB) 777, 777, 702
702 IF (IC) 777, 777, 703
703 IF (IA+IB-IC) 777, 777, 704
704 IF (IA+IC-IB) 777, 777, 705
705 IF (IB+IC-IA) 777, 777, 799
777 STOP 1
C USING HERON'S FORMULA WE CALCULATE THE
C AREA OF THE TRIANGLE
799 S = FLOATF (IA + IB + IC) / 2_{\circ} 0
AREA = SQRTF(S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *
+ $(S - FLOATF(1C)))$
WRITE OUIPUI TAPE 6, 601, TA, TB, TC, AREA
601 FORMAT (4H A= ,15,5H B= ,15,5H C= ,15,8H AREA= ,F10.2,
+ I3H SQUAKE UNIIS)
ENV

What Was Your First Programming Language?

Give a boring lecture on the history of programming languages

In-class exercise

Split up into four groups (randomly)

- Group 1: 1960 1980
- Group 2: 1980 1995
- Group 3: 1995 2010
- Group 4: 2010 Present

- 1. Spend approximately 20 minutes in your group searching the internet (Google, Wikipedia).
- 2. Identify:
 - What languages seem important (that you've heard of)?
 - What is the "coolest" language?
 - What is the origin of the language?
 - Research (PhD)
 - Industry (IBM, Kodak, HP, Apple, Google, Microsoft, etc)
 - Hobby (someone's fun project)
 - Trends of languages during the time period

- 3. Regroup after 20 minutes
- 4. Have each group give a short presentation with your findings
 - Don't worry -- I'll help you out