
Language
Design and
Evolution
Programming Languages
William Killian
Millersville University

What is a Language?

lan·guage
/ˈlaNGɡwij/
noun
1. the method of human communication, either

spoken or written, consisting of the use of words
in a structured and conventional way.

2. a system of symbols and rules for writing
programs or algorithms

Linguistics Definition

the method of human communication, either spoken
or written, consisting of the use of words in a
structured and conventional way

• Does “spoken” make sense for computers?

• Is “human communication” feasible with computer
programs?

Computer Science Definition

a system of tokens and rules for writing programs or
algorithms

• What tokens do we use?

• What rules do we have?

Tokens

• In the domain of language design, we will refer to
each word as a unique token
• Tokens can come in any order or be anything, but

some tokens might have some special meaning
• Usually alphanumeric, numeric, or symbolic

What tokens might we have in Java? C++?

Keywords

• Keywords are a type of Token
• Usually reserved by the language
• Only be used in specific locations

Examples:
int in Java
void in C++
const in Javascript
def in Python
let in OCaml

Others?

Symbols

• Symbols are another type of Token
• Usually combinations of punctuation characters
• Often used to indicate special operations

Examples:
== in Java
|> in OCaml
... in Javascript
<< in C++

Others?

Identifiers

• Identifiers refer to specific entities of our program
• Creating a new variable or function
• Accessing a data member
• Calling a function
• Using a library

Rules

• Within language design, we will refer to the order
in which symbols can be structured as rules
• Two main types of rules:
• Syntactic Rules

The order of all symbols must be well-formed

• Semantic Rules
The meaning of all symbols must be well-formed

• We will talk about these in detail later in the class

Syntax Rules (in English)

The boy went to school.
article noun verb prep. noun

noun phrase
prepositional phrase

verb phrase

sentence

Syntax Rules (in Java)

class := CLASS ID classArg* LBRACE defs* RBRACE

classArg := (IMPLEMENTS|EXTENDS) nameList

nameList := ID [, nameList]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)

visibility := (PUBLIC|PROTECTED|PRIVATE)
varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN …

paramList := varDef [, paramList]*
type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Syntax Rules (in Java)

class := CLASS ID classArg* LBRACE defs* RBRACE

classArg := (IMPLEMENTS|EXTENDS) nameList

nameList := ID [, nameList]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)

visibility := (PUBLIC|PROTECTED|PRIVATE)
varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN …

paramList := varDef [, paramList]*
type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

* - zero or more
[optional]

(choice1|choice2)

italicized means rule
CAPS means terminal (symbol)

Syntax Rules (in Java)

class := CLASS ID classArg* LBRACE defs* RBRACE

classArg := (IMPLEMENTS|EXTENDS) nameList

nameList := ID [, nameList]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)

visibility := (PUBLIC|PROTECTED|PRIVATE)
varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN …

paramList := varDef [, paramList]*
type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

What are the tokens in the shown rules?

Syntax Rules (in Java)

class := CLASS ID classArg* LBRACE defs* RBRACE

classArg := (IMPLEMENTS|EXTENDS) nameList

nameList := ID [, nameList]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)

visibility := (PUBLIC|PROTECTED|PRIVATE)
varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN …

paramList := varDef [, paramList]*
type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Where are the rules?

Syntax Rules (in Java)

class := CLASS ID classArg* LBRACE defs* RBRACE

classArg := (IMPLEMENTS|EXTENDS) nameList

nameList := ID [, nameList]*
defs := [visibility] [STATIC] (varDef SEMI| funDef)

visibility := (PUBLIC|PROTECTED|PRIVATE)
varDef := type ID

funDef := type ID LPAREN [paramList] RPAREN …

paramList := varDef [, paramList]*
type := (primitive | ID)

primitive := (INT | BOOLEAN | DOUBLE | SHORT | LONG | BYTE | FLOAT)

Exercise: Make a “Point” class with two public
members of type double: x and y?

Rosetta Code Examples (Homework)

• What problems did you investigate?

• What languages did you see?

• What languages DON’T you want to see again?

Language Transformation

• Computers understand binary
• Sequence of 0’s & 1’s
• See: Computer Architecture

• Humans understand languages
• See: Programming Languages

Language 0’s and 1’s
(binary)?

We need a tool to translate our language to binary

Compilers

• Input:
• A program (sequence of instructions) written in a well-

defined, predictable language

• Output:
• A sequence of bits that a computer architecture can

execute

• Task:
• Compilers translate from an input language to an output

language without loss of functionality
• Mathematically correct

The First Programming Language

Discussion:
• What year do you think the first programming

language came out?
• What did it look like?
• What did it run on?

Before
1930

1930 –
1940

1940 –
1950

After
1950

The First Programming Language

Ada Lovelace, 1843

The First Programming Language

Plankalkül (1942-1945)
• Konrad Zuse

Created

P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) → R0[:8.0]
max(V0[:8.0],V1[:8.0]) → Z1[:8.0]
max(Z1[:8.0],V2[:8.0]) → R0[:8.0]
END
P2 max (V0[:8.0],V1[:8.0]) → R0[:8.0]
V0[:8.0] → Z1[:8.0]
(Z1[:8.0] < V1[:8.0]) → V1[:8.0] → Z1[:8.0]
Z1[:8.0] → R0[:8.0]
END

function max3 (in a linear transcription) that calculates the maximum of three variables

The First Programming Language

FORTRAN (1954)
• John Backus + IBM

Commercial

What Was Your First
Programming Language?

History of Programming Languages

History of Programming Languages

Split up into four groups (randomly)
• Group 1: 1960 – 1980
• Group 2: 1980 – 1995
• Group 3: 1995 – 2010
• Group 4: 2010 – Present

History of Programming Languages

1. Spend approximately 20 minutes in your group
searching the internet (Google, Wikipedia).

2. Identify:
• What languages seem important (that you’ve heard of)?
• What is the “coolest” language?
• What is the origin of the language?

• Research (PhD)
• Industry (IBM, Kodak, HP, Apple, Google, Microsoft, etc)
• Hobby (someone’s fun project)

• Trends of languages during the time period

History of Programming Languages

3. Regroup after 20 minutes
4. Have each group give a short presentation with

your findings
• Don’t worry -- I’ll help you out

