
Expressions
Programming Languages
William Killian
Millersville University



Outline

• Purpose
• Associativity, Precedence, and 

Evaluation Order
• Side Effects
• Categories of Expressions
• Arithmetic
• Operators / Function Calls
• Casts
• Relational and Boolean

• Assignment



Purpose / Role of Expressions

• Expressions are how we represent computation
• The fundamental reason for the creation of 

computers and programming languages

• Expressions:
• Describe what actions a computer needs to do
• Semantics defines the order the actions are 

done
• Syntax defines the supported actions



Purpose / Role of Expressions

• From a functional programming view:
• Everything is an expression!

• From an imperative programming view:
• Assignment expressions are necessary!



Arithmetic 
Expressions



Case Study: 
Arithmetic 
Expressions

These are a programmer’s bread and butter
Operators
• Symbols that define mathematical 

operations (e.g. addition, multiplication)
Operands
• Variables and/or numbers that are acted 

upon in a computational context
Parentheses
• Symbols to change/force evaluation order
Function calls
• Abstraction of a user- or library-defined 

operation. Function calls can accept 
variable arguments.



Arithmetic Expressions

Classes of Operators
Unary Operator

An operator that accepts exactly one argument
~a !cond -val +cool

Binary Operator
An operator that accepts exactly two arguments
a + b true || false

Ternary Operator
An operator that accepts exactly three arguments
( condition ? value_if_true : value_if_false )



Arithmetic Expressions

• Evaluation Order
• The order in which subcomponents of an expression are 

evaluated

cout << (foo (--a, b++) - a) -> c

Questions:
1. What should be evaluated first?
2. Function argument evaluation order?
3. Which should come first: << or -> ?



Arithmetic Expressions

• Operator Precedence
• Determines the evaluation order of each operator when 

given a sequence of operands with operators with 
different precedence 

• Typical Precedence in Mathematics
• Parentheses
• Unary operators (e.g. +/-)
• Function Calls
• Exponentiation and Logarithms
• Multiplication and Division
• Addition and Subtraction



Arithmetic Expressions

• Operator Associativity
• Determines the evaluation order of each operator when 

given a sequence of operands with operators with the 
same precedence

• Typical Precedence in Programming Languages
• Left-to-Right: most/all arithmetic operators
• Right-to-Left: Assignment



Arithmetic Expressions

Operand Evaluation Order
• Variables
• Retrieve value from memory

• Constants
• Retrieve value from memory (usually embedded as part 

of the instruction)

• Parenthesized expressions
• Evaluate the inner expression first

• Function Calls?



Function 
Calls



Function Calls

• Name
• Parameters / Arguments

• When we encounter a function call, how should it 
be evaluated?

doSomething (funX(), varY, funZ (varY))



Operators as Function Calls

Languages can let you define your own operators

OCaml
let rec (^^) b = function

| 0                  -> 1
| 1                  -> b
| e when e < 0       -> 0
| e when e mod 2 = 0 -> (b * b) ^^ (e / 2)
| e                  -> b * (b ^^ (e - 1))



Operators as Function Calls

Languages can let you define your own operators

C++
MyInt& operator+= (MyInt& x, MyInt const& y) {

x.value += y.value;
return *this;

}

MyInt operator+ (MyInt x, MyInt const& y) {
return x += y;

}



Operators as Function Calls

Overloading
When you have an existing operator and want to 
repurpose it for your own type(s)

Defining
When you want to create a new operator that uses a 
custom sequence of symbols

Turns out, this is exactly how function calls work, too!



Operators as Function Calls: C++

// Given the following code
cout << foo (a + 1);

// C++ automatically transforms it into
operator<< (cout,

foo ( operator+ (a, 1)))



Dangers of Operator Overloading

• A comma can be overloaded in C++
R operator,(T const& lhs, U const& rhs)

• Operators can be rewritten in OCaml
let (+) (a:int) (b:int) =

failwith "no addition for you"

• What other strange things have you seen?



Side Effects

Functional Side Effects
• When a function changes a program’s state
• Parameter modification or updating a non-local variable

int myAdd (int& a, int b) {
a += b;
return a;

}

int a = 2;
int c = myAdd (a, 4);
int d = myAdd (a, 4);
// does c == d ?



“Preventing” Side Effects (1/2)

Disallow Functional Side Effects

• No references
• No non-local variable access
• Advantages:

• it works
• Disadvantages:

• inflexibility



“Preventing” Side Effects (2/2)

Define the language’s operator evaluation order

• This means all programs have well-defined behavior
• Example: add (++x, x, x--, x)
• Advantages:

• programmers will expect behavior
• Disadvantages:

• prevents some compiler optimization



Referential Transparency

• Given a program and any two expressions that have 
the same value
• When one expression is substituted for the other 

anywhere in the program
• Then the behavior of the program is not affected

result1 = (fun(a) + b) / (fun(a) – c);
temp    = fun(a);
result2 = (temp + b) / (temp – c);



Referential Transparency

Advantage
Semantics are much easier to understand

• All pure-functional programming languages are 
referentially transparent



Casting



Casting

• All values have types
• Some types may be compatible with one-another

int  ó float  ó double

Casting: Converting from one type to another

Two Possible “Modes”
1. Implicit

• language will automatically perform the conversion

2. Explicit
• the programmer must specify the conversion



Implicit Casting (Coercion)

• Automatic Type Conversion by the Compiler
• C, C++, Java, Python all support implicit casting
• OCaml has no implicit casting

• Type Promotion
• compiler expands the precision of a datatype

• bool --> char --> short --> int --> long
• float --> double

• Can happen during
• Expression operands (including assignment!)
• Function calls (parameters)
• Function calls (return values)



Implicit Casting Example: C++

double add(double a, double b) {
return a + b;

}

int result = add(1, 2.0);

// Where are there implicit casts?



Explicit Casting

• When the programmer must state in their program 
that a type conversion to occur

• New type of expression
Cast expression

(NewType) expr // Java, C, C++
NewType (expr) # python, F#

Will explicitly cast from expr’s old type to NewType



Explicit Casting Example: C++

static_cast<To> (From)
Converts only using implicit/user-defined conversions

dynamic_cast<To> (From)
Safely cast up/down/sideways along inheritance structure

const_cast<To> (From)
Removes const/volatile modifiers (doesn’t emit instruction)

reinterpret_cast<To*> (From*)
Reinterprets underlying bits (doesn’t emit instruction)



Casting

Three Possible Types:
1. Narrowing
• Information loss will happen
• Same “type” (integral, floating point) but shrinking size

2. Widening
• No information loss
• Same “type” (integral, floating point) but increasing size

3. User-defined / Custom
• The type will change classes (perhaps even custom)
• May or may not lose information



User-Defined Casts: C++

• C++ allows programmers to define their own casting 
function

class Foo {
operator Bar() { // enables implicit

return ...
}
explicit operator int() { // explicit only

return ...
}

};



Relationals
and Booleans



Relational and Booleans

Two Classes of Relational Operators
1. Equality

Used to determine equivalence of values
Usually some form of == for equality
Usually some form of != for inequality

Other operators:    <>   ~=   #   /=

2. Ordering/Comparison
Used to sort meaningful values
Uses symbols like > and < to express

Relational expressions evaluate to a Boolean



Equality

Loose Equality (with Coercion)
"1" == 1 true (JavaScript)

false (C/C++, Java, Python)
2  == 2.0 true (C/C++, Java)

Strict Equality
1  === 1 true (JavaScript)

"1" === 1 false (JavaScript) 
[1; 2; 3] = [1; 2; 3] true (OCaml)

Strong(est?) Equality
[1; 2; 3] == [1; 2; 3] false (OCaml)

a == a true (OCaml)



Ordering and Comparisons

Most Languages require one of two options:
1. Implement all operators (<, >, <=, >=)
• This interface returns a Boolean (true/false)
• C++ (pre- C++20) and Python take this approach
• C# can do this or do (2) with IComparable<E>

2. Implement one operator/interface (<=>)
• This interface usually returns one of three possible 

categories of values (less, equal, greater)
• Java – Comparable<E> via compareTo()
• JavaScript – define a lambda function
• OCaml – lambda or overload
• C++20 – define operator<=>



Expression Evaluation

Short Circuit Evaluation
• When we can determine the value of an expression without 

evaluating all parts

0 * ...
true || ...
false && ...

• Logic expressions are short-circuit evaluated in 
most languages
• Arithmetic expressions often are not



Assignment



Assignment

name <assign_op>  Expr

Assignment operator can vary
=  in most languages
=: in ADA
<- for reference assignment in OCaml / F#



Conditional Assignment

Perl
($flag ? $total : $subtotal) = 0

C++
(flag ? total : subtotal) = 0

C
*(flag ? &total : &subtotal) = 0

if (flag) {
total = 0

} else {
subtotal = 0

}



Compound Assignment

Assignment expressions often take the form:
a  = a  op b

Some languages support a shorthand syntax:
a  op= b

Can be overloaded in C++, Python



Unary Assignment Statements

Defined by unary symbols of ++ and --
++var or --var

Returns the new value
var++ or var--

Returns the old value

int x = 4;           int a = 2;
int y = ++x;         ++a++;
int z = x++;         // valid?
// y == z?



Multiple Assignment

In Some Languages

# Perl
($first, $second) = ($second, $first)

# Ruby, Python
first, second = second, first

# JavaScript
[first, second] = [second, first]

# OCaml
let (first, second) = (second, first) in ...



Multiple Assignment

In (Some) Compiled Languages

// Swift
(first, second) = (second, first)

// C++17 -- cheating with std::tuple functions
std::tie(first, second) = std::tuple(second, first)

// C++17 -- declaration + assignment
auto [first, second] = std::tuple(1, 2);


