
Exceptional
Programming
Programming Languages
William Killian
Millersville University

Outline

• Exceptions
• Handling Exceptions
• Constructs
• Case Studies
• C++
• Java
• Python
• OCaml

Exceptions

• Any unusual, unexpected event that can be
detected either by hardware or software that
usually requires special processing
• This special processing is called handling the

exception
• The special processing code is called an exception

handler
• Most languages provide an abstraction around

exceptions and exception handlers

Exceptions à Special Events

• In general, event handling logic isn’t so different
from exception handler logic
• Exceptions are ultimately a special event, of which

some amount of information can be included and
likewise extracted

What types of “events” would
you consider exceptional?

What type of information should you be
able to get from an exception?

Exception Terminology

• Raising – an exception is raised when its associated
event occurs
• Handling – processing the exception
• Continuing – resuming program execution after

handling an exception
• Fatal exception – a special class of exception which

is unrecoverable
• Aborting/Terminating – ending program execution

after encountering a fatal exception

Exceptional Control Flow
void foo() {
raise Error()

}
void bar() {
foo()

}
void baz() {
try {
bar()

} catch (Error) {

}
}

• When an exception
occurs, we will walk “up”
the activation record stack
until we encounter a
handler for that
exception.

• If we do not encounter an
exception handler, then
the Operating System
must handle it.

Exceptional Control Flow

void foo() {
raise Error()

}
void bar() {

foo()
}
void baz() {

try {
bar()

} catch (Error) {

}
}

baz

bar

foo Error

Error
Handler

Exceptional Control Flow

void foo() {
raise Error()

}
void bar() {

foo()
}
void baz() {

try {
bar()

} catch (Error) {

}
}

baz

bar Error

Error
Handler

Exceptional Control Flow

void foo() {
raise Error()

}
void bar() {

foo()
}
void baz() {

try {
bar()

} catch (Error) {

}
}

baz ErrorError
Handler

We have unwound the
stack to the handler

Exceptional Control Flow

void foo() {
raise Error()

}
void bar() {

foo()
}
void baz() {

try {
bar()

} catch (Error) {

}
}

baz ErrorError
Handler

We can now invoke the
error handling code

Alternatives to Exceptions?

• Use the return value to indicate error
• Use an out-parameter to indicate error
• Pass an error-handling subprogram as a parameter

What else could / would you use?

Handling
Exceptions

Handling Exceptions

• What information should we care about?

• The Function Call Stack
• Our Activation Record Instances
• Also called a Stack Trace
• Extremely useful for debugging / code tracing

• Any additional information related to the exception

Advantages to Handling Exceptions

• Error detection code is hard to write
• Exception handling shifts the burden onto the

runtime / language implementation
• The programmer can focus on the class(es) of

exceptions worth handling
• Exception propagation (with stack rewinding!)

enables a high-level of reuse for exception handling
code

Program Components

Executing Code
The part of the program with usually normal behavior
• May introduce an exception during execution, usually

through some exceptional case:
• null pointer dereference
• file not found
• division by zero

Exception Handlers
The part of the program that either:

1. Recovers the state of the program to a resumable place
2. Informs the user there was a problem
3. Terminates execution of the program
4. Or some combination of the three above

Program Components

Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Exception Handler 1

Exception Handler 2

Exception Handler 3

Exception Handler 4

Exception is Raised

Program Components

Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Exception Handler 1

Exception Handler 2

Exception Handler 3

Exception Handler 4

Exception is Raised Exception

1. Exception gets handled
by its appropriate handler

Program Components

Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Exception Handler 1

Exception Handler 2

Exception Handler 3

Exception Handler 4

Exception is Raised Exception

1. Exception gets handled
by its appropriate handler

2. Handler code runs

Program Components

Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Exception Handler 1

Exception Handler 2

Exception Handler 3

Exception Handler 4

Exception is Raised

1. Exception gets handled
by its appropriate handler

Continuation

3. The handler code goes to
a continuation point

2. Handler code runs

Program Components

Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Exception Handler 1

Exception Handler 2

Exception Handler 3

Exception Handler 4

Exception is Raised

1. Exception gets handled
by its appropriate handler

Continuation

3. The handler code goes to
a continuation point

Termination

2. Handler code runs

4. The continuation will
either Terminate or
resume executing code

Constructs

Creating Exceptional Control Flow

• Our traditional control logic is still present
• If/then/else, pre-test loops, for-loops, etc.

• Need to introduce special structures that can help
manage exceptional control flow

Goals:
• Should be able to mark a region as potentially

exception throwing
• Want handler code to co-exist with our executing code
• Should be able to handle different types of exceptions
• Should be able to clean up resources*

Creating Exceptional Control Flow

Should be able to mark a region as potentially exception
throwing

Introduce a “try” block

This tells the language that we are going to attempt to
run some code, but something exceptional may happen

Creating Exceptional Control Flow

Want handler code to co-exist with our executing code

Introduce a “catch” block

Also called an “exception” block. This tells the language
what to do in case an exception occurs. This looks and
behaves like an if-then-else

Creating Exceptional Control Flow

Should be able to handle different types of exceptions

Allow multiple “catch” blocks to one try

We should be able to have different handlers run for
different exceptions in the same code region

Creating Exceptional Control Flow

Should be able to clean up resources

Introduce a “finally” block

Code that runs regardless of exception or non-
exceptional behavior. Used for cleaning up resources
guaranteed to be allocated prior to an exception.

Design Issues

• How is an exception instance bound to an
exception handler?
• Can/should information about the exception be

passed to the handler?
• Where does execution continue, if at all, after an

exception handler completes its execution?
(continuation vs. resumption)
• Is some form of finalization provided?

Design Issues

• How are user-defined exceptions specified?
• Should there be default exception handlers for

programs that do not provide their own?
• Can predefined exceptions be explicitly raised?
• Are hardware-detectable errors treated as

exceptions that can be handled?
• Are there any predefined exceptions?
• How can exceptions be disabled, if at all?

Case Studies

C++

C++

try {
// code that could raise an exception

}
catch (formal parameter) {

// handler code
}
catch (formal parameter) {
// handler code

}

C++ Catch Clauses

Catch-clause that declares a named formal parameter
catch (const std::exception& e) { /* */ }

Catch-clause that declares an unnamed parameter
catch (const std::exception&) { /* */ }

Catch-all handler, which is activated for any exception
catch (...) { /* */ }

http://en.cppreference.com/w/cpp/error/exception
http://en.cppreference.com/w/cpp/error/exception

C++ Catch Clauses

• catch is the name of all handlers
• it is an overloaded name, so the formal parameter of

each must be unique
• The formal parameter can be used to transfer

information to the handler
• The formal parameter can be an ellipsis, in which case

it handles all exceptions not yet handled

C++ Catch Clauses

try {
f();

} catch (const std::overflow_error& e) {
// f() throws std::overflow_error

} catch (const std::runtime_error& e) {
// f() throws std::underflow_error (base class rule)

} catch (const std::exception& e) {
// f() throws std::logic_error (base class rule)

} catch (...) {
// f() throws std::string or int or anything else

}

C++ Throwing Exceptions

• Exceptions are all raised explicitly by the statement:
throw [expression];
• A throw without an operand can only appear in a

handler; when it appears, it simply re-raises the
exception, which is then handled elsewhere
• The type of the expression disambiguates the

intended handler

C++ Unhandled Exceptions

• An unhandled exception is propagated to the caller
of the function in which it is raised
• This propagation continues to the main function
• If no handler is found, the default handler is called
• The default handler, unexpected, simply terminates

the program; unexpected can be redefined by the
user

C++ Design Choices

• All exceptions are user-defined
• There are no predefined exceptions
• Exceptions are neither specified nor declared
• Exceptions are not named
• Hardware- and system software-detectable

exceptions cannot be handled
• Binding is done via formal parameter types
• Functions can say they do not throw an exception

with the noexcept keyword

Java

Java

• Similar philosophy as C++
• Forces exceptions to be objects
• All descendants of Throwable

Throwable

ExceptionError

Java: Error vs. Exception

Error
• Thrown by the Java interpreter for events such as

heap overflow
• Never handled by user programs
Exception
• User-defined exceptions are usually subclasses of this
• Has two predefined subclasses:

• IOException
• RuntimeException

• ArrayIndexOutOfBoundsException
• NullPointerException

Java: Exception Handling

• Syntax of try identical to C++
• Exceptions are thrown with throw, but must include the

new keyword (explicit dynamic allocation)
throw new IllegalArgumentException("Nope")

• Handlers are resolved in order. The first to match (or an
ancestor to it) will be applied.
• A single handler can be applied to many Exceptions

catch (IllegalArgumentException | IllegalStateException)

Java: Exception Continuation

• If no handler is found in the try construct, the
search is continued in the nearest enclosing try
construct, etc.
• If no handler is found in the method, the

exception is propagated to the method’s caller
• If no handler is found (all the way to main), the

program is terminated
• To ensure that all exceptions are caught, a handler

can be included in any try construct that catches
all exceptions

Java: Checked Exceptions

• Checked Exceptions thrown within a method
must be either

1. catched (or handled) within the method or
2. Listed explicitly in the throws clause of a method
public static File load(String name)
throws FileNotFoundException

• Error, RuntimeException, and their descendants
are all considered Unchecked Exceptions
• Everything else is considered a Checked Exception
• The throws clause is part of the function signature

Java: Throws Clause (on Function)

• The throws clause is part of the function signature
• A method cannot declare more exceptions in its throws

clause than the method it overrides
• A method that calls a method that lists a particular

checked exception in its throws clause has three
alternatives for dealing with that exception:
• Catch and handle the exception

Catch the exception and throw an exception that is listed in
its own throws clause
• Declare it in its throws clause and do not handle it

Java: Finally Clause

• The finally clause can appear at the end of a try
• Purpose: To run code regardless of what happens in the

try construct (or handlers that don’t throw)
try {

read = new Scanner(s);
File file = new File(path);

// use file that does not exist
} catch (Exception e) {

// report error
} finally {

read.close();

}

Java: Assertions

• There is one more class of exception-enabling
constructs present in the Java programming language

assert condition
assert condition: expression

• When evaluated to true, nothing happens
• When evaluated to false, AssertionError is raised
• Can be disabled during runtime without recompiling

Java: Design Choices

• The types of exceptions present a clean hierarchy
which is easily extendable
• The throws clause attached to the function signature

helps understand the exceptional control flow
contract in large systems
• The finally clause provides additional flexibility in

response to potential resource leaks
• The Java language implementation raises exceptions

that can be caught by user (client) code

Python

Python

• Like Java, Exceptions are objects
• BaseException abstract base class

• All predefined and user-defined exceptions are
derived from Exception
• Predefined subclasses of Exception:

• ArithmeticError
• OverflowError
• ZeroDivisonError
• FloatingPointError
• LookupError
• IndexError
• KeyError

Python Example

try:
execute code

except Exception1:
Handler for Exception1

except Exception2:
Handler for Exception2

else:
execute when no exception is raised

finally:
execute no matter what

Python: Exception Handling

• Handlers handle exceptions raised with the exact
name plus all subclasses
• Unhandled exceptions get propagated to the nearest

enclosing try block.
• If no handler for the exception is found, the default

handler is called
• Exceptions can be “raised” with the raise keyword
• raise IndexError

• An instance of the exception raised can be retrieved
• except Exception as ex_obj

Python: Exception Raising

• Exceptions can be “raised” with the raise keyword
• raise IndexError

• The assert statement is similar to Java’s
• assert test, data
• Tests the Boolean expression, test
• If the test fails, send the second parameter, data, to the

Exception object to be raised

OCaml

OCaml

• Exceptions belong to the type exn
• exn is an extensible sum type

• The biggest issue with exceptions is that they do not
appear in types.

• Must rely on documentation to see that a function
may throw an exception

OCaml: Defining Exceptions

exception Foo of string
(* Syntax: exception Tag [of inner] *)

let i_will_fail () =
raise (Foo "ohnoes!")

(* creating a new instance is as easy as
creating a discriminated union value *)

OCaml: Handling Exceptions

let safe_inverse n =
try Some (1 / n)
with Division_by_zero -> None

let safe_list_find p l =
try Some (List.find p l)
with Not_found -> None

OCaml: Handling Exceptions

try expr
• expr is any OCaml expression

with exn_match
• exn_match is a special pattern match
• the exception type must be the type matched
• the value result of the pattern match matching the

expression type from the try

OCaml: Printing Exceptions

let notify_user f =
try f()
with e -> (* implicit type *)

let msg = Printexc.to_string e
and stack = Printexc.get_backtrace ()
in Printf.eprintf

"there was an error: %s%s\n"
msg stack;

raise e

OCaml: User-Defined Exceptions

exception Foo of int

let () =
Printexc.register_printer

(function
| Foo i -> Some (Printf.sprintf "Foo(%d)" i)
| _ -> None (* for other exceptions *))

