
Event-Driven
Programming
Programming Languages
William Killian
Millersville University

Outline

• Event Types
• Handlers
• Event-Driven Architectures
• Case Studies:
• Java (with Swing)
• JavaScript (with HTML)

Events

• What are events?

• What type of events do we care about?

• How should a programming language handle the
different types of events?

Event Types

• Key press
• Key release

• Button click
• Mouse move
• Mouse drag
• Mouse down
• Mouse up

• Touch?

What do we do with Events?

• We ultimately want to execute some (arbitrary)
code when a particular event happens
• A mouse move should be a unique event compared to a

button click or a key press
• Different classes of events may have different options

• We need an abstraction to this code that should
run when different events occur
• This abstraction is called a Handler

Event Handler
• A piece of code that runs in response to an event

1. Show Interface 2. User triggers Event 3. Handle Event

We may wait here for a while…

We want to wait for more events

Event Handler

• Often modeled as a function or special Interface
• Usually takes in an event record
• An event record may contain information:
• The source – what element caused the event to trigger
• The Event Type – click, press, drag, down, up, etc
• Metadata – any extra information

• Programmers should be able to react to different
events in different ways

Event-Driven
Architecture

Event-Driven Architectures

• How does a Graphical User Interface work?
• How do I …
• … create contents?
• … show a window?
• … add new elements?
• … update elements?

• ... all while still do other things?!

Event-Driven Architectures

Step 1: Create another thread
• A normal program runs on a single thread
• A thread is a single control flow of instructions and

data. Basically, we can only do one thing at a time.
• GUI-based programs often need to do more than one

thing, so a GUI framework will often run its own
thread.

Event-Driven Architectures

Step 2: Design an Event Creation Model
• Define an event Hierarchy
• Examples to Follow…

• Answer hard questions:
• What types of components should trigger certain events?
• What information should be available to the programmer

when an event occurs?
• Can the programmer add additional information? How?

Event-Driven Architectures

Step 3: Hook in Event Creation to your Components
Components should have the ability to trigger events.
(For a button, it’s as simple as knowing its pressed)
• Each component will keep track of a List of Handlers
• When a component triggers an Event:

1. Create a new Event
2. Send the Event to each handler in the handler list
3. Each handler will process the event on the same “thread”

Java
Case Study

Java Swing

• Various Components:
• JTextField (text box)
• JRadioButton (radio button)
• JButton (a normal button)
• JPanel (a place to put many components)
• JFrame (a window)

• Programmatically construct a user
interface (rather than visually)
• A LayoutManger can be applied to a

panel for arrangement of components
in a particular way

JFrame

JPanel

JTextField

JTextField

JButton

Java Swing – Component Creation

final var field =
new JTextField("Enter your name");

final var button =
new JButton("Click Me");

final var label =
new JLabel("A simple label");

Java Swing – Component Creation

final var panel = new JPanel();
final var layout =

new BoxLayout(panel, BoxLayout.Y_AXIS);
panel.setLayout(layout);
panel.add(field);
panel.add(button);
panel.add(label);

Java Swing – Window Creation

final var window = new JFrame("My App");
window.setContentPane(panel);
window.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
window.pack();
window.setVisible(true);

Java Swing – ActionListener

final Counter count = new Counter();
button.addActionListener((ActionEvent e) -> {

int counter = count.increment();
String text = new StringBuilder()

.append(field.getText())

.append(" has clicked ")

.append(counter)

.append(" times")

.toString();
label.setText(text);
window.pack();

});

JavaScript
Case Study

Components and HTML

• I’m not covering HTML in this class J
• DOM – Document Object Model
• Provides an interface within JavaScript to

create/access/manipulate components

Javascript:
var btn = document.getElementById("button");
btn.addEventListener("click", () => {

alert ("you clicked the button");
});

https://developer.mozilla.org/en-US/docs/Web/Events

https://developer.mozilla.org/en-US/docs/Web/Events

Components and HTML
<html>
<head>
<title>My App</title>

</head>
<body>
<input type="text" id="name" value="Enter your name">

<input type="button" id="button" value="Click Me"/>

<script type="text/javascript" src="app.js">
</script>

</body>
</html>

JavaScript (in app.js)

var counter = 0;
function domReady() {
var btn = document.getElementById("button");
btn.addEventListener("click", () => {
counter += 1
var text = document.getElementById("output");
var field = document.getElementById("name");
text.textContent =

field.value +
" clicked the button " +
counter +
" times";

});
}

JavaScript (in app.js)

if (document.readyState === "complete" ||

(document.readyState !== "loading" &&

!document.documentElement.doScroll)) {

domReady();

} else {
document.addEventListener(

"DOMContentLoaded",

domReady);

}

