Event-Driven
Programming

Programming Languages
William Killian
Millersville University

L,
o( |

al




* Event Types
e Handlers
e Event-Driven Architectures

e Case Studies:

* Java (with Swing)
* JavaScript (with HTML)




Events

* What are events?
* What type of events do we care about?

* How should a programming language handle the
different types of events?



Event Types

* Key press
e Key release

e Button click
* Mouse move

* Mouse drag
* Mouse down
* Mouse up

 Touch?



What do we do with Events?

* We ultimately want to execute some (arbitrary)
code when a particular event happens

* A mouse move should be a unique event compared to a
button click or a key press

 Different classes of events may have different options

* We need an abstraction to this code that should
run when different events occur

 This abstraction is called a Handler




Event Handler

* A piece of code that runs in response to an event

We want to wait for more events

1. Show Interface 2. User triggers Event 3. Handle Event

We may wait here for a while...



Event Handler

* Often modeled as a function or special Interface
e Usually takes in an event record

* An event record may contain information:
* The source — what element caused the event to trigger
* The Event Type — click, press, drag, down, up, etc
 Metadata — any extra information

* Programmers should be able to react to different
events in different ways



Event-Driven

Architecture




Event-Driven Architectures

* How does a Graphical User Interface work?

e Howdo I ...
* ... create contents?
e ...show a window?
* ...add new elements?
* ... update elements?

e ... all while still do other things?!



Event-Driven Architectures

Step 1: Create another thread
* A normal program runs on a single thread

* A thread is a single control flow of instructions and
data. Basically, we can only do one thing at a time.

* GUI-based programs often need to do more than one
thing, so a GUI framework will often run its own
thread.



Event-Driven Architectures

Step 2: Design an Event Creation Model

* Define an event Hierarchy
* Examples to Follow...

* Answer hard questions:
* What types of components should trigger certain events?

* What information should be available to the programmer
when an event occurs?

e Can the programmer add additional information? How?



Event-Driven Architectures

Step 3: Hook in Event Creation to your Components

Components should have the ability to trigger events.
(For a button, it’s as simple as knowing its pressed)

* Each component will keep track of a List of Handlers

* When a component triggers an Event:
1. Create a new Event
2. Send the Event to each handler in the handler list
3. Each handler will process the event on the same “thread”



Java

Case Study




Java Swing

* \arious Components:
e JTextField (text box)
* JRadioButton (radio button)
e JButton (a normal button)
e JPanel (a place to put many components)
e JFrame (a window)

* Programmatically construct a user
interface (rather than visually)

* A LayoutManger can be applied to a
panel for arrangement of components
in a particular way

JFrame

JPanel

JTextField

JTextField

JButton




Java Swing — Component Creation

final var field =
new JTextField("Enter your name");

final var button =
new JButton("Click Me");

final var label =
new JLabel("A simple label");



Java Swing — Component Creation

final var panel = new JPanel();
final var layout =
new BoxLayout(panel, BoxLayout.Y AXIS),
panel.setlLayout(layout);
panel.add(field);
panel.add(button);
panel.add(label);



Java Swing — Window Creation

final var window = new JFrame("My App");

window.setContentPane(panel);

window.setDefaultCloseOperation(
JFrame.EXIT _ON _CLOSE);

window.pack();

window.setVisible(true);



Java Swing — ActionListener

final Counter count = new Counter();
button.addActionListener((ActionEvent e) -> {
int counter = count.increment();
String text = new StringBuilder()
.append(field.getText())
.append(" has clicked ")
.append(counter)
.append(" times")
.toString();
label.setText(text);
window.pack();

})s



JavaScript

Case Study




Components and HTML

* I'm not covering HTML in this class ©
* DOM — Document Object Model

* Provides an interface within JavaScript to
create/access/manipulate components

Javascript:

var btn = document.getElementById("button");
btn.addEventListener("click", () => {

alert ("you clicked the button");
1)

https://developer.mozilla.org/en-US/docs/Web/Events



https://developer.mozilla.org/en-US/docs/Web/Events

Components and HTML

<html>
<head>
<title>My App</title>
</head>
<body>
<input type="text" id="name" value="Enter your name">
<br />
<input type="button" id="button" value="Click Me"/>
<br />
<span id="output"></span>
<script type="text/javascript” src="app.js">
</script>
</body>
</html>



JavaScript (in app.js)

var counter = 0;
function domReady() {
var btn = document.getElementById("button");
btn.addEventListener("click", () => {
counter += 1
var text = document.getElementById("output");
var field = document.getElementById("name");
text.textContent =
field.value +
" clicked the button " +
counter +
" times";

});



JavaScript (in app.js)

if (document.readyState === "complete" ||
(document.readyState !== "loading" &&
ldocument.documentElement.doScroll)) {
domReady () ;
} else {

document.addEventListener(
"DOMContentLoaded",
domReady) ;



