
Complex
Types
Programming Languages
William Killian
Millersville University

Outline

• Strings (again?)
• Arrays
• Associative Arrays
• Lists
• Memory Representations

Strings

Definition
• Descriptor - additional information required to use

an instance of a type during program execution

What information does a string need to have?

String Descriptors
Compile-Time

• The string itself
May or may not have an empty
character (null) at the end

• Address
where it is located in memory

• Length
length of the string

Run-Time

• A buffer of characters
where the first “current length”
characters denote the current
string

• Address
where it is located in memory

• Current Length
number of characters in the
current representation

• Maximum Length
length of the buffer

Strings – Design Questions

• Should we be able to modify strings?
• Should we be able to compare strings to

characters?
• Should we be able to resize strings?
• What operations do we want to support?

Arrays

The Array
Type

• Homogeneous aggregate of data
elements
• Individual elements are

identified by position, relative to
the first element

Array Indexing

• Indexing (or subscripting) is mapping from indices
to elements
• Syntax:
• Can use square brackets e.g. arr[10]
• Can use parentheses e.g. a(10)

Array Storage Categories

• Static
• Subscript ranges are known before runtime
• Storage allocation (on stack) is known before runtime

• Fixed stack-dynamic
• Subscript ranges are known before runtime
• Storage allocation (on stack) is done at declaration time

• Fixed heap-dynamic
• Subscript ranges are known before runtime
• Storage allocation (on heap) is done at declaration time

• Heap dynamic
• Subscript ranges change change during runtime
• Storage allocation (on heap) can change during runtime

Multi-Dimensional Arrays

• Ability to define an array that spans more than one
dimension (e.g. a 2-D grid or 3-D volume)

Design Decisions:
• Indexing order vs. storage order
• row-major vs column

• Syntax for accessing elements
• arr[0][1] vs arr(0, 1)

• Allow for “jagged” arrays
• inner dimensions need not be the same size

• Allow for “slices” of arrays (also called a view)
• extract a sub-piece a[1:-1][1:-1] (ignores edges)

Compile-Time Descriptors
Single-Dimensional Array

• Element Type
• Index Type
• Index Lower Bound
• Index Upper Bound
• Address

Multi-Dimensional Array

• Element Type
• Index Type
• Number of Dimensions
• Index 1 Lower Bound
• Index 1 Upper Bound
• …
• Index N Lower Bound
• Index N Upper Bound
• Address

Array Initialization

• We may want to be able to initialize elements of an
array when we declare it!

C, C++, Java, C# example
int list [4] = {4, 5, 7, 83}

Character strings in C
char name [] = ″freddie″;

Arrays of strings in C
char* names [] = {″Bob″, ″Jake″, ″Joe″};

Java initialization of String objects
String[] names = {″Bob″, ″Jake″, ″Joe″};

Array Design Decisions

• Storage?
• Static (C/C++), Fixed stack-dynamic (C/C++), Fixed heap-

dynamic (Java, C++ with new), Heap Dynamic (Python)

• Heterogeneous?
• Elements do not need to all be of the same type
• Supported in Perl, Python, JavaScript, Ruby

• Multi-dimensional Shape?
• Square
• Upper-Triangular (Linear Algebra Applications)
• Jagged

Associative
Arrays

Associative Array

• Unordered collection of data elements that are
indexed by an equal number of values called keys
• User-defined keys must be stored
• Design issues:
• What is the form of references to elements?
• Is the size static or dynamic?

• Built-in type in Perl, Python, JavaScript, Ruby

Associative Arrays in Python/Ruby

called dict in python
data = {"a" : 1}
data["b"] = [1, 2, 3]
data["c"] = "cool"

called Hash in Ruby
data = Hash["a" => 1]
data["b"] = [1, 2, 3]
data["c"] = 'cool'

Lists
Not the kind you’re thinking of

List Types (in Functional Languages)

• Lists are defined as a Cons

• Cons is like a “node” containing two parts:
• CAR – the value stored at the node

• Often refer to the car as first or head
• CDR – refer to another Cons

• Often refer to the cdr as rest or tail

List Types
in Functional Languages

;; Lisp
(CAR (1 2 3))
(CDR (1 2 3))
(CONS 1 (2 3))
(CONS 1 (CONS 2 (CONS 3 NIL)))

(* OCaml *)
List.hd [1;2;3]
List.tl [1;2;3]
1::[2;3]
1::2::3::[]

Memory
Representation

of
Aggregate

Types

Tuples/Records

Field 1 Field 2 Field 3

Note: All fields can have different types/sizes

Arrays

• Arrays are stored contiguously in memory

• No extra space between elements
• Cover more in a Computer Architecture class

0 1 2 3 4 5 6 7 8 9

Lists

• View lists as being “nodes” in memory

