
Compiled & 
Interpreted 
Languages
Programming Languages
William Killian
Millersville University



Lecture Outline

• The Language Translation Pipeline
• Scanning
• Parsing
• Analysis
• Optimizing
• Code Generation

• Running Your Program
• The Compiler
• The Interpreter



The
Language 

Translation 
Pipeline



The BIG Picture

Source: Crafting Interpreters (https://craftinginterpreters.com)

https://craftinginterpreters.com/


Scanning

• A scanner takes in the linear stream of characters 
and chunks them together into tokens

• Some characters don’t mean anything.
• Whitespace is often insignificant
• Comments, by definition, are ignored by the language.
• The scanner usually discards these, leaving a clean 

sequence of meaningful tokens.



Parsing

• A parser takes the sequence of tokens and builds a 
tree structure that mirrors the grammar.

• Programming language experts call these tree 
structures “syntax trees”, “ASTs”, or just “trees”



Analysis (i.e. Static Analysis)

• Binding / Resolution
• For each identifier we find out where its name is 

defined and wire the two together.
• This is where scope comes into play—the region of 

source code where a name refers to a declaration.

• Type Checking
• Once we know where names are defined, we can also 

figure out their types. All operations must be valid.
• If operations aren’t supported, we report a type error.



Optimizing

• Once we understand what the user’s program 
means, we can “change it”
• Optimizing is a safe change to the program that 

results in the same semantics (e.g. has the same 
behavior)
• The resulting program is usually more efficient

pennyArea = 3.14159 * (0.75 / 2) * (0.75 / 2);
pennyArea = 0.4417860938;

Example: Constant Folding



Code Generation

• The last step
• Converting it to a form the machine can run.
• Usually primitive assembly-like instructions a CPU runs 

and not the kind of “source code” a human reads.

• Do we generate instructions for a real CPU or a 
virtual one?
• Real CPU: Intel x86, ARM AArch64, IBM PowerPC, MIPS
• Virtual CPU: LLVM IR, Microsoft CIL, Java Bytecode, 

Python bytecode
• Advantages: Portable across Real CPUs
• Disadvantages: Performance penalty 



Running
Your

Program



Two Major Components

• Virtual Machine
• Only needed for languages that target Virtual CPUs
• Converts from Virtual CPU to Real CPU at runtime

• Language Runtime
• Needed by all languages
• The “extra pieces” required to have a language operate



Virtual Machine

• When you target a Virtual CPU, you need a 
program that converts the Virtual CPU instructions 
to Real CPU instructions
• This is done with a Virtual Machine
• A program that emulates a hypothetical chip supporting 

your virtual architecture at runtime.

Virtual CPU 
Instructions

Real CPU 
InstructionsVirtual Machine



Language Runtime

• We usually need some services that our language 
provides while the program is running.
• Examples:
• If a language automatically manages memory, we need a 

garbage collector running to reclaim memory
• If a language supports instanceof, then we need to 

keep track of the type of each object during execution.

• In a compiled language, the code implementing the 
runtime gets inserted into the resulting executable.
• If the language is run inside an interpreter or VM, 

then the runtime lives there.



Compilers
and

Interpreters



Compilers and Interpreters

• BOTH must perform all stages in the language 
translation pipeline
• The difference is when certain stages happen

• What languages do you think are compiled?
• What languages do you think are interpreted?
• Which languages do you think can be both?



Compiled/Interpreted Languages

Language Compiled Both Interpreted

Java

C / C++

OCaml

Javascript

Python

C#



Common Languages



Compiled Languages

• Compiling is an implementation technique that 
involves translating a source language to some 
other form.
• When you generate bytecode or machine code, you are 

compiling.
• When you transpile to another high-level language you 

are compiling too.

• When we say a language implementation “is 
a compiler”, we mean it translates source code to 
some other form but doesn’t execute it.



Interpreted Languages

• When we say a language implementation is 
an interpreter, we mean it takes in source code and 
executes it immediately.
• It runs programs “from source”.
• There is no separate entity created



Language != Implementation

• Language Implementations can either be:
• Compiled
• Interpreted

• Notice how we didn’t mention a language?
• Statements:
• I can write an interpreter for C++ (see cling)
• I can write a compiler for Javascript
• I can write an interpreter for C#
• I can write a compiler for ___________
• I can write an interpreter for ___________



Bonus Video

Interpreters and Compilers (Bits and Bytes, Episode 6)
https://www.youtube.com/watch?v=_C5AHaS1mOA

https://www.youtube.com/watch?v=_C5AHaS1mOA

