
Classes of 
Languages
Programming Languages
William Killian
Millersville University



Lecture Outline

• Ways to Compare Languages
• Declarative vs. Imperative
• Structured vs. Non-structured
• Compiled vs. Interpreted

• Modern Classes of Languages
• Procedural
• Functional
• Object-Oriented
• Data-Driven and Query
• Multi-Paradigm*



Declarative vs. 
Imperative



Imperative Languages

• uses statements that change a program’s state

const container = document.getElementById('container');
const btn = document.createElement('button');
btn.className = 'btn red';
btn.onclick = function(event) {
if (this.classList.contains('red')) {
this.classList.remove('red');
this.classList.add('blue');

} else {
this.classList.remove('blue');
this.classList.add('red');

}
};
container.appendChild(btn);



Declarative Languages

• express the logic of a computation without 
describing its control flow

class Button extends React.Component {
this.state = { color: 'red' }
handleChange = () => {
const color = this.state.color === 'red' ? 'blue' : 'red’;
this.setState({ color });

}

render() {
return (<div>
<button
className=`btn ${this.state.color}`
onClick={this.handleChange}>

</button>
</div>);

}
}



Structured vs. 
Unstructured



Related Terms

• Structured in three ways
1. Selection statements (if/else or switch)
2. Sequence statements (successive statements)
3. Iteration statements (loops – for/while/do-while)

• A language doesn’t need to have all three



Structured Languages

Selection Statements:
if <cond> <then>
if <cond> <then> <else>

Sequence Statements:
<stmt1>
<stmt2>
…

Iteration Statements:
while <cond> <body>



Non-Structured Languages

• What would we have without if/while/for?

string_len:
cbnz x0, .L8
mov w0, 0
ret

.L8:
stp x29, x30, [sp, -16]!
mov x29, sp
add x0, x0, 1
bl string_len
add w0, w0, 1
ldp x29, x30, [sp], 16
ret

labels

jumps/branches



Questions

• Why would you want to program in a non-
structured language?

• What languages are structured?

• What languages are unstructured?



Compiled vs. 
Interpreted



Compiled Languages

• Source language is translated AHEAD OF TIME to 
the target architecture language
• Done once
• Necessary for performance-critical applications

Examples?



Interpreted Languages

• Source language is translated ON DEMAND to the 
target architecture language
• Can be done many times for the same code
• Necessary for (dynamic) scripting languages

Examples?



Modern 
Classes of 
Languages



Procedural Languages

• based on the concept of the procedure call
• Procedures contain a series of computational steps 

to be carried out
• Any procedure might be called during a program's 

execution, including by other procedures or itself.
• One “global” state (which can be subdivided)

• Features:
• Modularity
• Scoping



Functional Languages

• Programs are constructed via functions/procedures
• Declarative -- doesn’t capture any state
• Mathematical model

• Features:
• Functions can take functions as parameters / return
• Functions are pure – have no side-effects
• Functions are often recursive – no looping constructs
• Use strong types to reject invalid programs early



Object-Oriented Languages

Objects contain two main parts of information
• State (or data)

• the underlying data model used to represent an object.

• Behavior (or code)
• the available set of actions which can be used to update an 

object’s state or interact with other entities in the program

• Features
• Object's own procedures can access and often modify the 

data fields of itself (via this or self)
• Objects are usually instances of classes, which also determine 

their type.



Data-Driven and Query Languages

• We often need languages to ONLY operate on data
• Data-Driven

• Operate on data being “matched”
• Process different matches of data accordingly
• Command-Line Tools: awk, sed

• Query Languages
• Operate on a Data Model
• Three main classes of operations:

• Adding, Deleting, Modifying
• INSERT INTO employees (first_name, last_name, 
fname) VALUES ('Bob', 'Smith', 'bsmith1');



Multi-Paradigm Languages

• Most languages are multi-paradigm languages
• C++, Java, Python, Rust, Javascript
• Can be object oriented
• Can be purely functional
• Can be purely procedural

• Often, we just use what features we need to solve 
the type of problem we are facing


