
Bindings
and Scope
Programming Languages
William Killian
Millersville University

Lecture Outline

• Bindings
• Type Inferencing
• Type Binding Examples

• Lifetime
• Definition
• Examples

• Scope
• Constructs that create scope
• Static Scope
• Dynamic Scope
• Referencing Environments

Bindings

Type Inferencing

Some languages can infer or deduce the type
auto v = 4

var w = true

val x = 0

let y = 3.1415

const z = "hello"

Dynamic Type Binding

The type of a variable can change via assignment

lst = [1, 2, 3] # does not matter
what lst was before

• Advantages:
• Flexibility
• Ease of use

• Disadvantages:
• Costly (must do type checking all the time)
• Type error deduction can be difficult/impossible

Case Study: Python

x = 4

x = 4 + "”

x = [x]

x = set(x)

x = {"x" : x}

Case Study: C++

auto x = 4;
auto x = static_cast<float>(x);

auto x = 4.0f;
x = 3;

// another example?

Case Study: JavaScript

var x = 4
x = "hello"

let y = 4
y = "hello"

const z = 4
z = 5

Lifetime

Lifetime

• The lifetime of a variable is the time during which it
is bound to a particular memory cell
• Lifetimes can be “created” or “destroyed”
• Create: allocation – getting cell(s) of memory
• Destroy: deallocation – putting cell(s) back

• Four different categories of lifetime
• Static
• Stack-dynamic
• Explicit heap-dynamic
• Implicit heap-dynamic

Static static int x = 4

• Storage bound prior to program execution
• Binding cannot change

• Advantages
• Direct addressing (immediately available)
• History sensitive

• Disadvantages
• Inflexible
• Only one instance permitted

Stack Dynamic int x = 4

• Storage binding created when declaration is
“executed” on the computer.
• Only the address can change

• Advantages
• Enables recursion
• Conserves storage (local)

• Disadvantages
• Allocation/deallocation overhead
• Not history sensitive
• Indirect addressing (extra instruction)

Explicit Heap Dynamic new/delete

• Allocated and deallocated by explicit directives
• Takes effect during execution
• Referenced only through pointers/references

• Advantages
• Dynamic storage management

• Disadvantages
• Inefficient
• Unreliable

Implicit Heap Dynamic =

• Allocated and deallocated by assignment statement
• All arrays/objects in Javascript, Perl, PHP

• Advantages
• Flexibility (generic code)

• Disadvantages
• Inefficient – all attributes are dynamic
• Loss of error detection

Scope

Scope

• Range of statements over which a variable is visible
• The scope rules of a language determine how

references to names are associated with variables
• To connect a name reference to a variable, you (or

the compiler) must find the declaration
• Static Scope:
• Based on the structure of the program

• Dynamic Scope:
• Based on the execution of the program

Constructs that Create Scope

• Blocks
• Present in most imperative languages
• Any statement can be a block of statements
• Automatically creates a new scope
• Shadowing permitted in C/C++ but disallowed in Java/C#

• Let
• Present in most functional languages
• Composed of two parts:

• Binding names to values
• Using the names declared in the first part

Scope Categories

• Local variables
• Declared within a particular unit of the program

• Nonlocal variables
• Visible within a particular unit of the program
• Not declared in that unit of the program

• Global variables
• Visible within all units of a program
• Declared in the outermost scope of the program

Static Scope Rules

Search process:
• Search declarations, first locally
• Then in increasingly larger enclosing scopes, until one is

found for the given name

Terms:
• Static ancestors: the enclosing static scopes
• Static parent: the nearest static ancestor

Variables can be hidden from a unit by having a
"closer" variable with the same name (shadowing)

Static Scope Example
int x = 3;
int main() {
std::cout << x << '\n';
int x = 4;
{
int x = 5;
{

std::cout << x << '\n';
int x = 6;
std::cout << x << '\n';

}
std::cout << x << '\n';

}
std::cout << x << '\n';

}

Dynamic Scope Rules

Search process:
• Based on calling sequences of functions
• Search back through the chain of function calls that

forced execution to this point

Notes:
• All visible names must be visible to the function called
• “Temporal” in nature – dependent upon what was most

recently accessed

Variables are hidden from a unit if one of the same name
exists in a closer dynamic scope

Dynamic Scope Example

function main() {
var o = "enter a number: ";
print();
var x = input();
test();

}

function test() {
if (x % 2 == 0) {
even();

} else {
odd();

}
}

function even() {
o = "even";
print()

}

function odd() {
o = "odd";
print()

}

function print() {
output(o);

}

Static vs. Dynamic Scope

Static
• Advantages
• Possible for compiler to

detect errors
• Type checking

guaranteed

• Disadvantages
• Information more

difficult to pass

Dynamic
• Advantages
• Convenient

• Disadvantages
• Impossible(?) to analyze

without running
• All variables visible to

subprograms
• Poor readability

Static vs. Dynamic Scoping

function main() {
var x = 1;
function funA() {

var y = x;
print(y);

}
function funB() {

var x = 7;
funA();

}
funB();

}

What does this program print out with
- Static Scoping Rules?
- Dynamic Scoping Rules?

Referencing Environments

• All variables/names visible at a current program
unit is known as a referencing environment
• We have seen how the referencing environment

can vary for static and dynamic scoping rules
• Static-Scoped Languages:
• Local variables plus all the visible variables in all

enclosing scopes

• Dynamic-Scoped Languages:
• Local variables plus all visible variables in all active

subprograms
• Active subprogram: when running but not terminated

