
Basic Types
Programming Languages
William Killian
Millersville University



Outline

• Primitive Data Types
• Pointers and References
• Sum Types
• Enumerations
• Optional
• Expected
• Variants

• Product Types
• Records
• Tuples

• Strings?



Primitive 
Data Types



Primitive Data Types

• The fundamental building-blocks of programming
• Three main categories
• boolean
• integral
• floating-point

• What makes them “primitive”?
• Stored directly as-is in memory
• Bit-for-bit stored in registers

• a special (super fast) memory storage location in hardware
• Supported operations are implemented in hardware



boolean

• Domain of values:
true
false

• Representation:
• Representing a single-bit in hardware is often impossible
• Instead, use a single byte (8 bits)
• Language-dependent:

• C/C++: “all zeroes” denotes false, anything else denotes true
• Java: must explicitly use true and false



integral

• Numerical values represented in a power-of-two 
notation. Possible implementations:
• unsigned  (2n-1 2n-2 . . . 22 21 20)
• one’s complement -(2n - 1) + (2n-1 2n-2 . . . 22 21 20)
• two’s complement (-2n-1 2n-2 . . . 22 21 20)

• Bit : binary digit
• 8-bit integral numbers contain 8 individual bits 

which can have any permutation of values



integral

• Common sizes:
• 8-bit (char)
• 32-bit (int)
• 16-bit (short) 
• 64-bit (long)

• Common language implementations
int Python, C, C++, Java, OCaml, Ruby
long C, C++, Java
Int/Long Swift
i32/u64 Rust 



floating-point

• Numbers that have a decimal point
• Often some advanced hardware-based 

representation (e.g. IEEE 754)
• Various sizes (32, 64) change range and precision
• Common Language Implementations

• float  Python, C, C++, Java, Ocaml, Ruby
• double C, C++, Java (larger)
• Float/Double Swift
• number TypeScript
• f32/f64 Rust



Pointers and 
References



Pointers and References

• Some Programming Languages provide a direct 
abstraction to a memory model
• Pointer
• “points” to a memory location
• Abstraction: memory is just a large array of bytes
• Interpret what is at that location as a specific type

• Reference
• “refers” to a pre-existing entity
• Usually called an alias (alternative name)

Most “newer” languages hide pointers



Pointers

• Point to a location in memory (or null)
• Accessing null or an invalid memory 

location: BIG PROBLEM
• Languages with Pointers:
• C/C++
• BASIC
• FORTRAN
• COBOL
• Go
• OCaml

• Languages with “Hidden” Pointers:
• Java
• Ruby



References

• Refer to an existing entity
• Solves the “deference” pointer 

issue with null
• Languages with References:
• C++
• Swift
• Rust



Case 
Study: 
C++

• Pointer types get * added
• Reference types get & added

• To Reference from Pointer:
auto& ref = *ptr;

• To Pointer from Reference:
auto* ptr = &ref;



Case 
Study: 
C++

int a = 4;
int& b = a;
b++;
// value of a ?

int* p = &a;
int* q = p;
a = 7;
// value of  p ?
// value of *p ?



Sum Types



Sum Types

• When we think of “sum” we think of addition
• All types have a possible range of values
• boolean { true, false }
• uint { 0, 1, 2, … , 4294967294, 4294967295 }

• Sum types ”add” the possible range of values 
together to the range of the new type

Sum Types allow us to:
• Combine pre-existing types and allow one to be 

“selected” at any given time
• Create new datatypes for “tagging” information



Basic 
Sum 
Types

• Enumerations
• Optional
• Expected
• Variant

When you hear sum
… think or



Enumerations

• Give us a way to specify non-integral values
• Often used to define a new class of information
• Examples:
• Months: January, February, March, April, …
• Card Suits: Clubs, Diamonds, Hearts, Spades
• What else?

// C
enum suit {
CLUBS, DIAMONDS, HEARTS, SPADES

};



Optional

• When we want a choice of Something or Nothing
• Two classes:
• Something of some type we care about
• Nothing (None)

// C++
std::optional<int> v; // initially nothing

v = 4;

(* Ocaml *)

let x : int option = Some 4
let y : int option = None



Expected

• Gives us a way to specify a return value or an error 
if something else happened
• Two Classes:
• Result of some type we care about
• Error of some error result we can inspect

• Similar in structure to Optional
// some made up language
Expected<String, Error> data = load_file("big.txt")
if (data) { // valid
...

} else { // inspect error
...

}



Variant

• When we want a choice with some possible set of 
values for each choice
• Optional and Expected are specific types of Variants
• Data can be tagged and can take on different forms
(* OCaml *)
type expr = Add of expr * expr 

| Mul of expr * expr
| Var of string
| Num of int

(* represents expr: x * (a + 4)   *)
let e = Mul(Var("x"),Add(Var("a"),Int(4)))



Product 
Types



Product Types

• When we see “product” we think multiplication
• Product types multiply the range of possible values

Using Product Types allows us to:
• Aggregate (group) pieces of information together
• Create a new entity with named attributes



Basic 
Product 
Types

• Records
• Tuples

When you hear product
… think and



Records

• A group or collection of named entities
• Referred to as classes or structs in most languages
• Access data via name
// C++
struct Student {    // A student has
std::string name; // a name AND
int id;           // an ID number AND
double gpa;       // a GPA

};
Student s = {"Will", 327291, 3.38 };
s.gpa = 4.0; // fix student record



Tuples

• A group or collection of entities
• Access data via location (first, second, third, …)
(* OCaml *)
let threeInts : int * int * int = (1, 2, 3) 
let (first, _, _) = threeInts; (* get first *)
// C++
std::tuple<int, int, int> threeInts {1, 2, 3};
int first = std::get<0>(threeInts);
# Python
threeInts = (1, 2, 3)
first = threeInts[0]



Strings?



Strings

• A sequence of characters
• When “combined” can provide additional context

and information

• Questions
• Should we view strings as being a basic types?
• Should we view strings as being a complex* type?
• Or could it be both?

"Hello, World!" "bob" "racecar"



Primitive vs. Library Defined

• In some languages, Strings are primitive types
• OCaml
• JavaScript
• Ruby
• Python

• In other languages, they are not (library-defined)
• C++
• Swift
• Rust
• Java

• In other languages, they don’t exist**
• C



Immutability

• Mutable means can be changed
• Immutable means cannot be changed

• Languages where strings are mutable:
• Python
• JavaScript
• Rust (String)

• Languages where strings are immutable:
• OCaml
• Java
• Rust (str)



Wrap Up



Conclusion

Primitives
• Values that can be directly implemented in hardware (memory)

Pointer and References
• Refer to existing instances of a particular type in memory
• Concept of a null memory address (pointer)

Sum Types
• Give us a choice between options (or)

Product Types
• Group types together (and); individually accessible

Strings?
• Can be primitive or not; can be mutable or not


