Problem: Draw marks at regular intervals on a line
-----------------------------
1/2
1/4 | 3/4
1/8 | 3/8 | 5/8 | 7/8
| | | | | | |
--+---+---+---+---+---+---+--
// recursive
void drawRuler (double xBegin, double xEnd, int height);
// draws a single mark
void drawMark (double xCoord, int height);
drawRuler (0, 1, 3);
--> drawMark (0.5, 3);
-----------------------------
1/2
|
|
|
--------------+--------------
--> drawRuler (0, 0.5, 2);
--> drawMark (0.25, 2);
--> drawRuler (0.5, 1, 2);
--> drawMark (0.75, 2);
-----------------------------
1/2
1/4 | 3/4
| | |
| | |
-------+------+------+-------
drawRuler (0, 0.25, 1)
--> drawMark (0.125, 0)
drawRuler (0.25, 0.5, 1)
--> drawMark (0.375, 0)
drawRuler (0.5, 0.75, 1)
--> drawMark (0.125, 0)
drawRuler (0.75, 1, 1)
--> drawMark (0.975, 0)
-----------------------------
1/2
1/4 | 3/4
1/8 | 3/8 | 5/8 | 7/8
| | | | | | |
--+---+---+---+---+---+---+--
def drawRuler (begin, end, h):
# base case?
# recursive case?
if h == 0:
return
mid = begin + (end - begin) / 2
drawRuler (begin, mid, h - 1)
drawMark (mid, h)
drawRuler (mid, end, h - 1)
A divide and conquer (and combine) algorithm:
def drawRuler(begin, end, incr):
drawMark (begin, END_HEIGHT);
begin += incr
while begin != end:
drawMark (begin, ???) # what goes here?
begin += incr
drawMark (end, END_HEIGHT);
Merge Sort
Quick Sort
#include <algorithm>
void mergeSort (int A[], size_t first, size_t last) {
if (last - first > 1) {
size_t mid = first + (last - first) / 2;
mergeSort (A, first, mid);
mergeSort (A, mid, last);
std::inplace_merge (A + first, A + mid, A + last);
}
}
Merge sort requires a merge algorithm
Out-of-place merge: merge (v, first, mid, last)
v[first, mid)
is sortedv[mid, last)
is sortedv[first, last)
sorteddef merge(v, first, mid, last, out):
i1, i2 = first, mid
j = 0
# while the first "half" isn't empty
while i1 != mid:
if i2 == last: # still have the first range to copy
while i1 != mid: # copy remaining elements in left half
out[j] = v[i1]
i1 += 1
j += 1
return
if v[i1] < v[i2]: # copy the smaller value to out
out[j] = v[i1]
i1 += 1
else:
out[j] = v[i2]
i2 += 1
j += 1
while i2 != mid: # copy remaining elements in right half
out[j] = v[i2]
i2 += 1
j += 1
int[8] A = {7, 6, 4, 1, 3, 5, 2, 8};
mergeSort (A, 0 /* low */, 4 /* mid */, 8 /* high */);
void quickSort (int A[], size_t first, size_t last) {
if (last - first > 1) {
auto i = partition (A, first, last);
// pivot is placed in A[i]
quickSort (A, first, i);
quickSort (A, i + 1, last);
}
}
Note: not quite the code we'll be writing
<= pivot
and > pivot
< pivot
, == pivot
, > pivot
size_t partition (int A[], size_t first, size_t last) {
int pivot = /* somehow figure this out */;
size_t up = first, down = last - 2;
while (true) {
while (A[++up] < pivot) {}
while (A[--down] < pivot) {}
if (up < down)
swap (A[up], A[down]);
else
break;
}
swap (A[last - 2], A[up]);
return up;
}
#include <utility>
int median3 (int* A, size_t first, size_t last) {
size_t mid = first + (last - first) / 2;
--last; // important: make last inclusive
if (A[mid] < A[first])
std::swap (A[mid], A[first]);
if (A[last] < A[first])
std::swap (A[last], A[first]);
if (A[last] < A[mid])
std::swap (A[last], A[mid]);
std::swap (A[mid], A[last - 1]);
return A[last - 1];
}
def chunk (size, chunks, index):
return size * index / chunks
# range is [first, last)
def median5 (v, first, last):
if (last - first <= 5):
sort (v, first, last)
return first + (last - first) / 2
for i in range (0, 5):
low = chunk (last - first, 5, i)
high = chunk (last - first, 5, i + 1)
medIdx = median5 (v, low, high)
# swap median with "out"
v[medIdx], v[first + i] = v[first + i], v[medIdx]
sort (v, first, first + 5)
return first + 2
while (a[++i] < pivot);
while (a[--j] > pivot);
if (i < j) swap (a[i], a[j]);
else break;
Assumptions:
Running time:
$T(N) = T(i) + T(N - i - 1) + cN$
Always choose the smallest element as the pivot
$$T(N) = T(i) + T(N - i - 1) + cN$$In the worse case, $i = 1$ (or $i = N - 1$)
$$T(N) = T(N-1) + cN$$$$T(N-1) = T(N-2) + c(N-1)$$$$T(N-2) = T(N-3) + c(N-2)$$$$\vdots$$$$T(2) = T(1) + c(2)$$$$T(N) = T(1) + c \sum_{i=2}^{N}{i} = O(N^2)$$Always choose the median
$$T(N) = 2 * T(N / 2) + cN$$$$\frac{T(N)}{N} = \frac{T(N/2)}{N/2} + c$$$$\frac{T(N/2)}{N/2} = \frac{T(N/4)}{N/4} + c$$$$\frac{T(N/4)}{N/4} = \frac{T(N/8)}{N/8} + c$$$$\vdots$$$$\frac{T(2)}{2} = \frac{T(1)}{1} + c$$$$\frac{T(N)}{N} = \frac{T(1)}{1} + c * lg N $$$$T(N) = c * N lg N + N = O(N lg N)$$nth_element (v.begin(), v.end(), 0)
== MINnth_element (v.begin(), v.end(), v.size() - 1)
== MAXnth_element (v.begin(), v.end(), v.size() / 2)
== MEDIANPartition based on some pivot value
i = partition (A, left, right)
+-----------------------+---+-----------------------+
+ values <= kth |kth| values >= kth |
+-----------------------+---+-----------------------+
nth_element
¶int nth_element (int* A, size_t first, size_t last, size_t n) {
size_t mid = partition (A, first, last);
if (n == mid)
return A[n];
if (n < mid)
return nth_element (A, first, mid, n);
else
return nth_element (A, mid, last, n - mid);
}
Dutch National Flag Problem
#include <utility>
size_t median3 (int* A, size_t first, size_t last) {
size_t mid = first + (last - first) / 2;
--last;
if (A[last] < A[mid])
std::swap (A[last], A[mid]);
if (A[last] < A[first])
std::swap (A[last], A[first]);
if (A[mid] < A[first])
std::swap (A[mid], A[first]);
return mid;
}
std::pair<size_t, size_t>
partition (int* A, size_t first, size_t last) {
if (last - first <= 1) {
return std::pair(first, last);
}
int pivot = A[median3(A, first, last)];
size_t i = 0;
while (i < last) {
if (A[i] < pivot) {
std::swap(A[first++], A[i++]);
} else if (A[i] > pivot) {
std::swap(A[i], A[--last]);
} else {
++i;
}
}
return std::pair(first, last);
}
int A[9] = {3, 2, 0, -1, 2, 4, 5, 2, 1};
#include <iostream>
auto result = partition(A, 0, 9);
std::cout << result.first << ' ' << result.second;
A
result = partition(A, 0, 9);
std::cout << result.first << ' ' << result.second;
h_sort
Similar to insertion sort, but we specify a stride distance h
void hSort (int* A, size_t size, size_t h) {
if (size < 2) {
return;
}
for (size_t i = h; i < size; ++i) {
for (size_t c = i; c >= h; c -= h) {
if (A[c] < A[c - h]) {
std::swap (A[c], A[c - h]);
} else {
break;
}
}
}
}
h_sort
with decreasing size of h
What's a good sequence for h
?