CSCI 340 Homework B

1) A. All strongs that end in b and have an even number of b's

B. All strings without the substrug ana

Ja a b A

2) 1 (5) - (x) - (x)

5-365 |aX | 1 X →bs |aY | ∧ Y ->65/1

Ull strings that contain less than 4 6's and end in an a.

 $s \rightarrow b$

 $\begin{pmatrix} a^* + ba^* + ba^* ba^* + ba^* ba^* ba^* ba^* a \\ 7 & 7 & 7 \\ nobs (b & 2b's & 3b's \end{pmatrix} / 3$ $S \rightarrow (S)$ $S \rightarrow S+S$ 5 -> 5* This language is not regular. 5-255 5-10

Consider only the production 5-7 (5). This have the converted to a semicrosol

4)
$$S \rightarrow XY$$

 $X \rightarrow aX | Xa | a$
 $Y \rightarrow bY | b$
 $X has a production of the form
 $\frac{N \rightarrow Nt}{P \rightarrow Vt}$ Regular grammans
only have seminands. Since
 $X represents one-sr-more as, we
Can remove the "malthemed"
 $production$
 $Y \rightarrow bY | b$
 $X \rightarrow aX$
 $Y \rightarrow bY | b$
 $X \rightarrow Xb$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow Xb$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow Xb$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow Xb$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow Xb$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow Xb$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow AX$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow Xb$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow AX$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow AX$
 $X \rightarrow Yb$
 $Y \rightarrow bY | b$
 $X \rightarrow AX$
 $X \rightarrow Yb$
 $Y = AX$
 $X \rightarrow Xb$
 $X$$$

CSC 340 Homework #9		
<i>ı</i>)	$L = \{a^{n}b^{n}\} \qquad \begin{array}{l} Chomsky'd \\ S \rightarrow aSb \\ S \rightarrow \end{array} \qquad \begin{array}{l} S \rightarrow AX \\ \Rightarrow aSb \\ S \rightarrow \end{array} \qquad \begin{array}{l} S \rightarrow AS \\ X \rightarrow SB \\ A \rightarrow a \\ B \rightarrow b \end{array}$	A X AB a B a B a b
z)	If Palindrom is odd length, let so be the middle letter and & is y be the adjacent characters. If Palindrome is even length, let & be the middle two letters and winy be the adjacent characters.	is the only derivation tree with no self embedding states
3)	The regular language pumping lemma tries to Show $w = Xy \neq \therefore xy^n \neq \in f$ The context-free pumping lemma tries to Show $w = UVXy \neq \therefore UV^n Xy^n \neq \in f$ Since $\xi = \xi a \xi$, RL y^n can always equal CF $V^n y^n$ RL x can always equal CF UX RL χ can always equal CF Z	

6) Split by into bxbz a*b*b€a€ a⁻b⁻ b⁻a⁻ 5-asb/1 5-165a/1 5, -as, b/ 52- bsza/1 5 - 5, 5z s, ->as, b/~ 527652a/1

7) [A] count of a's in a ba" is always different than the count of b's. The resulting language must be empty [B] PALINDROME can be odd or even length. If it's even length, then it must also be even-even. Therefore, the resulting language must be add patind some E No palindrom 13 of the form a b. Because of this fact, Earby is a superset of PALINDROME. There fore, the language is still palindom