
Lab 5: Turing Machines

CSCI 340: Computational Models

100 points

In this lab, you’ll use JFLAP to design Turing Machines. �e transitions in JFLAP
again have three actions: the character being read, the character being wri�en and
the direction to move the tape head in (there is an “extra” option here compared
to what we’ve been studying — the tape head can move le�, right or stay — so L,
R, or S).
Note that the blank character �lling the tape on either end of the input (yes, the
machines in JFLAP are 2-way in�nite tapes) is �. You get this character on a tran-
sition by leaving the �eld blank. However, you can’t seem to type this character
in the input window, so it can’t be part of the initial string you’re testing.
Also note that the output is considered to be everything from what the tape head
is currently pointing to until the end of the string. So please rewind the tape head
to the beginning of the output at the end of each machine by looping until you
are in the right position (this will o�en mean �nding � at the le�).
Download the handout from AutoLab and do not change the �lenames. Be sure to
use JFLAP version 7! When you are ready to submit for testing, create a .zip �le of
the directory (it must still be called handout) and submit that .zip �le to AutoLab.
In all cases other than #4, the grading will be all or nothing for each problem, so
be sure that you are thoroughly testing your machines!

1. [20pt] Construct a TM that concatenates two words divided by a B. �e
input alphabet is Σ = { 1 0 B }. So input of 1011B011 should produce
1011011.

2. [20pt] Construct a TM that accepts all strings with more a’s than b’s (input
alphabet is Σ = { a b }). Leave the tape head positioned at the � at the
end of the output (no output expected).

3. [25pt] Construct a TM that accepts all strings of the form anbnanbn where
Σ = { a b }. Leave the tape head positioned at the � at the end of the
output (no output expected).

4. [45pt] Construct a TM that adds two binary numbers together and leaves
the answer on the TAPE in binary notation. �e input will be of the form:
#(0 + 1)∗$(0 + 1)∗

You can consider this to be #x-part$y-part. You can change the y-part to
represent the answer or you can introduce a new working area a�er the y-
part to hold the answer. Remember to leave your tape head in position so
that the answer shows up as the output of the machine. Be careful of the
over�ow condition where the answer has more bits than the largest number.
(�e insert subprogram from class will be helpful here).
Note: For 20/35 points, your TM must handle input strings of the same
length (your output may be di�erent length if there’s over�ow). For 35/35
points, you need to handle cases where the input strings can be of di�erent
lengths. You can assume you always have at least one character for each
input, though.

1

