CSCI 340 - Homework 12

Professor Killian

Due: May 5, 2019 @ 11:59PM

1. Consider the grammar:

$$
\begin{array}{ll}
\text { Prod 1 } & S \rightarrow A B S \mid \Lambda \\
\text { Prod 2 } & A B \rightarrow B A \\
\text { Prod 3 } & B A \rightarrow A B \\
\text { Prod 4 } & A \rightarrow a \\
\text { Prod 5 } & B \rightarrow b
\end{array}
$$

- [4pts each] Derive the following words: $a b b a$, babbaaab
- [4pts] Prove every word generated by this grammar has equal number of a 's and b 's (EQUAL)

2. [4pts] Find a grammar that generates all words with more a 's than b 's (MOREA)
3. [4pts] Find a grammar that generates all words not in EQUAL
4. [10pts] Construct a Turing Machine that accepts a number in unary and converts it to binary
5. [5pts] Describe how you would construct a Turing Machine that applies unary number exponentiation. For example, input of the form aaabaa should yield 9 a 's and aabaaaaa should yield $32 a$'s on the tape.
6. [5pts] Trace the function application of $\operatorname{MULT}(N 2)(N 3)(S U C C)(0)$ until a single value is produced. N2 and N3 are Church numerals representing the values of 2 and 3. The first few substitutions are made below:
```
m => n => f => x => m(n(f))(x)
n => f => x => N2(n(f))(x) m >> N2
f => x => N2(N3(f))(x) n >> N3
x => N2(N3(SUCC))(x) f -> SUCC
N2(N3(SUCC))(0) x -> 0
N3(SUCC)(N3(SUCC)(0)) N2(y)(z) -> y(y(z))
```

