CSCI 340 - Homework 8

Professor Killian

Due: March 31, 2019 @ 11:59PM

1. Find CFGs that generate the following regular languages. Assume $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$
(a) All strings that end in b and have an even number of b 's in total
(b) All strings without the substring $a a a$
2. For the following CFG, find a regular expression that defines the language. Also describe the language.
$S \rightarrow a S|b X| a$
$X \rightarrow a X|b Y| b Z \mid a$
$Y \rightarrow a Y \mid a$
$Z \rightarrow a Z \mid b W$
$W \rightarrow a W \mid a$
3. Starting with the alphabet $\Sigma=\left\{\begin{array}{ll}a & b\end{array}()+*\right\}$, find a CFG that generates all regular expressions. Is this language regular?
4. Find a regular form of the following CFG :
$S \rightarrow X Y$
$X \rightarrow a X|X a| a$
$Y \rightarrow b Y \mid b$
5. Remove all Λ-productions from the following CFG:
$S \rightarrow X a X \mid b X$
$X \rightarrow X a X|X b X| \Lambda$
6. Remove all unit productions from the following CFG:

$$
\begin{aligned}
& S \rightarrow a X \mid Y b \\
& X \rightarrow S \\
& Y \rightarrow b Y \mid b
\end{aligned}
$$

7. Convert the following CFG to CNF
$E \rightarrow E+E$
$E \rightarrow E * E$
$E \rightarrow(E)$
$E \rightarrow 7$
8. Create a PDA for EVEN-EVEN
9. Build a deterministic PDA that accepts the language $a^{n} b^{n+1}$ (Assume $n>0$)
10. Consider the following PDA (Assume $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$

(a) Trace the following words on the PDA (show STACK and TAPE and STATE) $a a a b b b$ and $a a a a b b$
(b) Find a CFG that defines the language accepted by the PDA
(c) Describe the language in English
