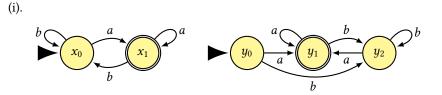
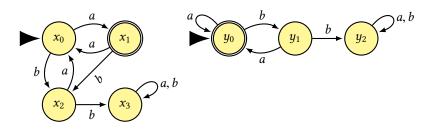
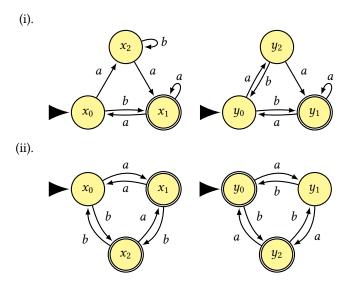
CSCI 340 – Homework 6

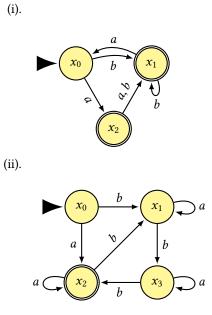

Professor Killian

Due: March 10, 2019 @ 11:59PM


1. For each of the following pairs, find a RE and FA that define $L_1 \cap L_2$

(i).	$(\mathbf{a} + \mathbf{b})^* \mathbf{a}$	$\mathbf{b}(\mathbf{a} + \mathbf{b})^*$
(ii).	Even-length strings	$(\mathbf{b} + \mathbf{a}\mathbf{b})^*(\mathbf{a} + \lambda)$


- (iii). Odd-length strings $a(a + b)^*$
- (iv). Even-length strings Strings with an even number of *a*'s
- 2. Use the pumping lemma, show each are non-regular
 - (i). $a^n b^{n+1}$
 - (ii). $a^n b^n a^n$
- 3. Using Myhill-Nerode theorem, show each are non-regular
 - (i). EVEN-PALINDROME (all PALINDROMEs with even length)
 - (ii). SQUARE $(a^{n^2} \mid n \ge 1)$
- 4. Let us define PARENTHESES to be the set of all algebraic expressions where everything but parentheses have been deleted e.g. { λ () (()) (()) ((())) (()) ()() ()()) ()() ()() ()() ()() ()())
 - (i). Show its non-regular using Myhill-Nerode
 - (ii). Show the pumping lemma can't prove that it's non-regular
 - (iii). If we convert (to *a* and) to *b*, show that PARENTHESES becomes a subset of EQUAL in which each word has the property that when read from left-to-right, there are never more *b*'s than *a*'s
- 5. Show the following FAs are equivalent:


(ii).

6. Using the method of intersecting each machine with the complement of each other, determine whether two machines accept the same language (or not)

7. Do the following FAs accept a finite or infinite language? Justify.

