
CSCI 340: Computational Models

Computers

Chapter 25 Department of Computer Science

Defining a Computer

• Finite automata are language acceptors
• FAs with Output (Mealy, Moore machines) are tranducers
• Pushdown automata — language acceptors
• Turing machines have a natural output — what is on the TAPE

• Sometimes the TAPE is only a scratchpad
• But we can use TMs for a completely di�erent purpose

Idea: use a TM as a “calculator” of sorts

The code for 0 = λ

The code for 1 = a

The code for 2 = aa

The code for 3 = aaa

This is called unary encoding. Numbers can be separated with b’s
1 / 15

Decoding and “Calculators”

• Every word in (a + b)∗ can be interpreted as a sequence:

Example: bbabbaa

(no a’s) b (no a’s) b (one a) b (no a’s) b (two a’s)

0, 0, 1, 0, 2
• Whatever the TM leaves on the TAPE is deemed output.

Example

Consider an ADDER:

START 1 2 HALT

(a, a, R)

(b, a, R)

(a, a, R)

(∆,∆, L) (a,∆, R)

2 / 15

A Base-2 Adder — Part 1

A simple “incrementer” shall be known as T1:

START 1 2 HALT
($, $, R)

(0, 0, R)
(1, 1, R)

(∆,∆, L)

(1, 0, L)

(0, 1, L)

• Find the last bit of the binary number
• Reverses the last bit of the number
• If the last bit was 1, it backs up to the le� and changes the whole

clump of 1’s to 0’s... and the first 0 to the le� gets turned into a 1
• If the input only contained 1, the machine crashes

3 / 15

A Base-2 Adder — Part 2

Let us consider another TM — T2 that subtracts 1 from it
1 Reverse all 0’s and 1’s between $ (one’s complement)
2 Use T1 to add one to the number between $
3 Reverse all 0’s and 1’s between $ (one’s complement)

START 1 2

3 4 HALT

($, $, R)

(0, 1, R)
(1, 0, R)

($, $, L)

(1, 0, L)

(0
, 1
, L
)(0, 0, L)

(1, 1, L)

($, $, R)

(0, 1, R)
(1, 0, R)

($, $, R)

4 / 15

A Base-2 Adder — Part 3

Assuming we have input of the form $ x-part $ y-part
we want to calculate x + y . We assume x + y does not overflow
• If y is the larger number and starts with 0, we guarantee there

will not be overflow. If not, we can insert 0 in front of y-part.
• The algorithm is as follows:

1 Check the x-part to see if it a 0. If yes, HALT
2 Subtract 1 from the x-part using T2
3 Add 1 to the y-part using T1
4 Go to Step 1

The full machine is omi�ed but lives on page 598 in the textbook

Example: $10$0110

5 / 15

So What Is A Computer?

Definition
If a TM has a property that for every word it accepts, at the time it
halts, it leaves one solid string of a’s and b’s on its TAPE starting at
the beginning, we call it a computer.

The input string we call the input (or string of input numbers),
and we always identify it as a sequence of nonnegative integers.

The string le� on the TAPE we call the output and identify it also as
a sequence of nonnegative integers.

Note:
a’s and b’s could be 0’s and 1’s or use some other form of encoding

6 / 15

Computable Functions

Definition
If a TM takes a sequence of numbers as input and leaves only one
number as output, we say that the computer has acted like a
mathematical function.

Any operation that is defined on all sequences of K numbers (for
some number K ≥ 1) and that can be performed by a TM is called
Turing-computable or just computable.

Theorem
Addition and simple subtraction are computable
In both of these examples, K = 2. addition and simple subtraction are defined on sequences of
two numbers and both leave one-number answers.

Theorem
MAX(x, y) which is equal to the larger of the two nonnegative integers x
and y is computable.

7 / 15

Addition and Simple Subtraction

• Addition was shown to be computable
• Simple subtraction (monus) performs x − y but ensures the

result is at least 0 (we have no notation for negative numbers)

START

1

2

3
5

6

9

8 7

4
HALT

10

(a, A, R) (a, a, R)

(b, b, R)

(a, a, R)

(∆
, ∆
, L
)

(a, ∆, L
)

(b,∆, L)

(∆, ∆, L)

(a, a, L)

(A, a, R)

(a, a, L)

(b, b, L)

(∆, ∆, L)

(A, ∆, R)

(a, ∆
, R
)

(∆, ∆, R)
(b, b, R)

(a, a, R)

(∆
, ∆
, L
)

(∆, ∆, R)

(b,
∆,

R)

(a, ∆, R)

(∆, ∆,
R)

8 / 15

MAX

• On the previous slide, state 4 represented the first input group
had more a’s than the second input group. State 9 represented
the second input group had more a’s than the first input group.
• Instead of erasing, we should use x and y to remember our

“counts” for each.
• The only modifications necessary is the path toward HALT

• In the first case, every x in the first group should become an a
and everything to the right of (and including) the b should be
erased

• In the second case, the first group and b should be erased and
every y in the second group should become an a

9 / 15

Identity and Successor

Theorem
The IDENTITY function

IDENTITY(n) = n for all n ≥ 0

and the SUCCESSOR function

SUCCESSOR(n) = n + 1 for all n ≥ 0

are computable.

Note: these functions are defined on only one number K = 1 so we
expect input of the form a∗

10 / 15

Identity and Successor

Identity

START 1 HALT
(a, a, R)

(∆,∆, R)

(a, a, R)

(∆,∆, R)

Successor

START 1 HALT
(a, a, R)

(∆, a, R)

(a, a, R)

(∆, a, R)

11 / 15

Multiplication

Theorem
Multiplication is computable

Proof (part of...)

• imagine our tape contains an b am

• introduce a special symbol # on the far right
• for each a to the le� of the b, mark it as consumed and copy n
a’s to the right of the #
• erase everything up to the # symbol

Example:

aaa b aaaa #
Aaa b aaaa # aaaa
AAa b aaaa # aaaaaaaa
AAA b aaaa # aaaaaaaaaaaa

�
12 / 15

Church’s Thesis

Which functions cannot be computed by a Turing Machine?

“It is believed that there are no functions that can be defined by
humans whose calculation can be described by any well-defined
mathematical algorithm that people can be taught to perform, that
cannot be computed by Turing Machines. The Turing Machine is
believed to be the ultimate calculating mechanism”

Church actually combined the works of recursive functions and
computable functions and stated that turing machines can
algorithmically represent recursive functions and model computable
functions. This is called Lambda Calculus

13 / 15

Lambda Calculus
Natural Numbers (Church Numerals)

Number Expression JavaScript

0 λf .λx .x f => x => x
1 λf .λx .fx f => x => f(x)
2 λf .λx .f (fx) f => x => f(f(x))
3 λf .λx .f (f (fx)) f => x => f(f(f(x)))

SUCC (n is a church numeral fn, f is a function, x is the “value”)

λn.λf .λx .f ((n f)x) n => f => x => f(n(f)(x))

PLUS (n and m are church numerals, f is a function, x is the “value”)

λm.λn.λf .λx .(m f)((n f)x)) m => n => f => x => m(f)(n(f)(x))

λm.λn.(m SUCC)n m => n => m(SUCC)(n)

MULT (n and m are church numerals, f is a function, x is the “value”)

λm.λn.λf .λx .(m(n f))x m => n => f => x => m(n(f))(x)
14 / 15

Homework 12b

4 [10pts] Construct a Turing Machine that accepts a number in
unary and converts it to binary

5 [5pts] Describe how you would construct a Turing Machine
that applies unary number exponentiation. For example, input
of the form aaabaa should yield 9 a’s and aabaaaaa should
yield 32 a’s on the tape.

6 [5pts] Trace the function application of MULT(N2)(N3)(SUCC)(0)
until a single value is produced. N2 and N3 are Church numerals
representing the values of 2 and 3. The first few substitutions are
made below:
m => n => f => x => m(n(f))(x)
n => f => x => N2(n(f))(x) m -> N2
f => x => N2(N3(f))(x) n -> N3
x => N2(N3(SUCC))(x) f -> SUCC
N2(N3(SUCC))(0) x -> 0
N3(SUCC)(N3(SUCC)(0)) N2(y)(z) -> y(y(z))

15 / 15

