

CSCI 340: Computational Models
The Chomsky Hierarchy

Chapter 24 Department of Computer Science

Grammars

- We have yet to discover the "language structure" that define recursively enumerable sets independent of Turing Machines
- Question: Why are context-free languages called "context-free"?

Grammars

- We have yet to discover the "language structure" that define recursively enumerable sets independent of Turing Machines
- Question: Why are context-free languages called "context-free"? If there is a production $N \rightarrow t$, where N is any nonterminal and T is any terminal, then the replacement of t for N can be made in any situation
- English is not context-free

$$
\begin{aligned}
\text { Base } & \rightarrow \text { cowardly } \\
\text { Ball } & \rightarrow \text { dance } \\
\text { Baseball } & \Rightarrow \text { cowardly dance }
\end{aligned}
$$

- We make use of the context of words - their adjacent words
- Insight: Instead of replacing one string character by a string of characters (CFG), we must consider replacing an entire string of characters (including both terminals and nonterminals)

Phase-Structure Grammars

A phrase-structure grammar is a collection of three things:
(1) A finite alphabet Σ of letters called terminals
(2) A finite set of symbols called nonterminals that includes the start symbol S
(3) A finite list of productions of the form:

String $1 \rightarrow$ string 2
Where string 1 can be any string of terminals and nonterminals that contains at least one nonterminal and string 2 is any string of terminals and nonterminals whatsoever.

A derivation in a phrase-structure grammar is a series of working strings beginning with S, which, by making substitutions according to the productions, arrives at a string of all terminals.

The language generated by a phase-structure grammar is the set of all strings of terminals that can be derived starting at S.

Example

$$
\begin{aligned}
S & \rightarrow X S \mid \Lambda \\
X & \rightarrow a X \mid a \\
a a a X & \rightarrow b a
\end{aligned}
$$

S is the language of zero or more X 's
X is the language of one or more a 's

$$
\begin{aligned}
S & \Rightarrow X S & & B y 1 \\
& \Rightarrow X X S & & B y 1 \\
& \Rightarrow X X & & B y 1 \\
& \Rightarrow a X X & & B y 2 \\
& \Rightarrow a a X X & & B y 2 \\
& \Rightarrow a a a X X & & B y 2 \\
& \Rightarrow b a X X & & B y 3 \\
& \Rightarrow \text { baaXX } & & B y 2 \\
& \Rightarrow \text { baaaX } & & B y 2 \\
& \Rightarrow \text { bba } & & B y 3
\end{aligned}
$$

Phase-Structure Grammars > CFG

Theorem

At least one language that cannot be generated by a CFG can be generated by a phase-structure grammar

Proof.

Consider the following phase-structure grammar over $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$

$$
\begin{array}{ll}
\text { Prod } 1 & S \rightarrow a S B A \\
\text { Prod } 2 & S \rightarrow a b A \\
\text { Prod } 3 & A B \rightarrow B A \\
\text { Prod } 4 & b B \rightarrow b b \\
\text { PRod } 5 & b A \rightarrow b a \\
\text { PROD } 6 & a A \rightarrow a a
\end{array}
$$

Showing the grammar generates $a^{n} b^{n} a^{n}$

To generate the word $a^{m} b^{m} a^{m}$ for some fixed number $m \ldots$
Apply Prod 1 exactly ($m-1$) times:
aaa...a $\quad S \quad B A B A B A \ldots B A$
$(m-1) a$'s followed by S followed by $(m-1) B A$'s
Then Prod 2 once:
aaaa...a b ABABABA... BA
m a's followed by b followed by m 's and $(m-1) B$'s
Apply Prod 3 enough times such that all B 's come before all A 's
aaaa...a b BBB ... AAA ... A
$m a$'s followed by b followed by $(m-1) B$'s then $m A$'s
Apply Prod 4 until it can't, Prod 5 until it can't, Prod 6 until it can't $a a a a \ldots a \quad b b b b \ldots b \quad a a a a \ldots a$
$m a$'s followed by m 's followed by m 's

Showing the grammar only generates $a^{n} b^{n} a^{n}$

- Consider some derivation $a S B A$ - which is of the form: "some a 's" S "equal number of A 's and B 's"
- If we never apply Prod 2 then the working string will contain an S and not generate any words
- As soon as Prod 2 is applied, we have a string of the form: " m a's" abA "collection of m A's and m B's"
- Prod 3 merely scrambles this collection of A 's and B 's by shifting all B 's to come before all A 's.
- Productions 4,5 , and 6 are converting with rules of the form: $t N \rightarrow t t$ where t is a terminal and N is a nonterminal
- All productions from 4,5 , and 6 are done one-at-a-time from left-to-right. The resulting string is of the form:
$a^{(m+1)} \quad b \quad b^{m} \quad a^{(m+1)}$

Phase-Structure Grammars

Theorem

If we have a phase-structure grammar that generates the language L, then there is another grammar that also generates L which has the same alphabet of terminals and in which each production is of the form:
string of nonterminals \rightarrow string of terminals and nonterminals
Where the left side cannot be Λ but the right side can

Proof.

(1) For each terminal, introduce a new nonterminal and change every occurrence of the "old" symbol to the "new" symbol. For example, $a S b X b \rightarrow b b X Y X$ becomes $A S B X B \rightarrow B B X Y X$
(2) Add the new productions. From the example above, introduce $A \rightarrow a$ and $B \rightarrow b$
These new productions are now of the form $N^{+} \rightarrow N^{*}$ or $N \rightarrow t$

Example of Phase-Structure Modification

Consider the phase-structure grammar over $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$:

$$
\begin{aligned}
S & \rightarrow a S B A \mid a b A \\
A B & \rightarrow B A \\
b B & \rightarrow b b \\
b A & \rightarrow b a \\
a A & \rightarrow a a \\
S & \rightarrow X S B A \mid X Y A \\
A B & \rightarrow B A \\
Y B & \rightarrow Y Y \\
Y A & \rightarrow Y X \\
X A & \rightarrow X X \\
X & \rightarrow a \\
Y & \rightarrow b
\end{aligned}
$$

Is transformed into:

Type 0 Grammars

Definition

A phase-structure grammar is called type $\mathbf{0}$ if each production is:
non-empty string of nonterminals \rightarrow any string of terminals and nonterminals

- We cannot allow the production "anything \rightarrow anything"

This would allow a terminal to yield some other string (even a nonterminal!) This goes against the philosophy of what a terminal is

- We do not want to allow any Λ on the left hand side

This could arbitrarily have letters pop into words indiscriminately (see Genesis 1:3 for " $\Lambda \rightarrow$ light")

The Chomsky Hierarchy

The Chomsky Hierarchy of Grammars

Type	Name of Languages Generated	Production Restrictions $X \rightarrow Y$	Acceptor
0	Phrase-structure = recursively enumerable	$X=$ any string with nonterminals $Y=$ any string	TM
1	Context- sensitive	$X=$ any string with nonterminals $Y=$ any string as long as or longer than X	TMs with bounded (not infinite) TAPE, called linear-bounded automata LBAs*
2	Context-free	$X=$ one nonterminal $Y=$ any string	PDA
3	Regular	$X=$ one nonterminal $Y=t N$ or $Y=t$, where t is terminal and N is nonterminal	FA

The Chomsky Hierarchy

Type $0=$ TM

Theorem

If L is generated by a type 0 grammar G, then there is a TM that accepts. L

Proof.
(1) Insert $\$$ at the beginning and end of the input, followed by an S $a b b \Delta$ becomes $\$ a b b \$ S \Delta$
2. In the TM, enter a "grand central state" similar to the POP state for PDA simulations of CFGs
The field of the TAPE beginning with the second $\$$ will keep track of the working string. We want to simulate (nondeterministically) the application of all productions

Type $0=$ TM

Proof. (continued)

(3) If we were lucky enough to apply just the right productions at just the right points in the working string, we branch to a subprogram that compares the working string to the input string.

- If the input was derivable, the machine HALTs
- If the number of words generated was finite and none match, the machine will CRASH
- If the grammar generates an infinite number of words where the input is not derivable, the machine will LOOP forever
(4) This NTM accepts any word in the language generated by G and only those words

Theorem

If a language is r.e., it can be generated by a type 0 grammar
Proof is omitted due to scope and length... (10 pages)

Product and Kleene Closure of r.e. Languages

Theorem

If L_{1} and L_{2} are recursively enumerable languages, then so is $L_{1} L_{2}$.
The recursively enumerable languages are closed under product.

Proof.

(1) Add the subscript ${ }_{1}$ to all nonterminals and terminals of L_{1}
(2) Add the subscript 2 to all nonterminals and terminals of L_{2}
(3) Introduce a new production $S \rightarrow S_{1} S_{2}$
(4) Introduce new productions $t_{1} \rightarrow t$ for all terminals in L_{1}
(5) Introduce new productions $t_{2} \rightarrow t$ for all terminals in L_{2}

All derivations will be unique and independent between S_{1} and S_{2}.
The newly introduced production of $S \rightarrow S_{1} S_{2}$ ensures the concatenation

Product and Kleene Closure of r.e. Languages

Theorem

If L is recursively enumerable, then L^{*} is also. The recursively enumerable languages are closed under Kleene star.

Proof.

(1) We'd want to introduce something like $S \rightarrow S_{1} S \mid \Lambda$ but this won't work! Multiple S_{1} 's could potentially interact!
Replicate all productions of L and append ${ }_{2}$ to all nonterminals.
(2) Then append ${ }_{1}$ to all nonterminals found in L.
(3) Introduce the following new productions:

$$
S \rightarrow S_{1} S_{2} S\left|S_{1}\right| \Lambda
$$

From S we can only produce: $\Lambda \quad S_{1} \quad S_{1} S_{2} \quad S_{1} S_{2} S_{1} \quad S_{1} S_{2} S_{1} S_{2} \quad \ldots \quad \square$

Context-Sensitive Grammars

Definition

A generative grammar in which the left side of each production is not longer than the right side is called a context-sensitive grammar, denoted CSG, or type 1.

- We presume all human languages are CSGs but cannot mathematically prove it.
- All context-sensitive grammars are recursive.

Theorem

For every context-sensitive grammar G, there is some special TM that accepts all the words generated by G and crashes for all other inputs

Context-Sensitive Grammars

Proof.

(1) All rules make the working string longer
(2) Since G is recursive, the shortest derivation has no "loops"
(3) We can iteratively apply all valid productions on a working string and ensure unique working strings
(4) Our TM will generate all words less than an upper length w in a procedure similar to how a TM accepted type 0 grammars
(5) In a finite number of steps it will either find a derivation for a string, determine there is none, or crash

CSG Decidability

Knowing that a language is recursive translates into being able to decide membership for it

Theorem

Given G, a context-sensitive grammar, and w, an input string, it is decidable by a TM whether G generates w

Proof.

- Create the CWL code word for the TM based on G described in the previous theorem
- Feed the encoded turing machine of G and w into the Universal Turing Machine
- Because w either halts or crashes on the coded TM, membership is decidable

The Language L

Theorem

There is at least one language L that is recursive but not context sensitive

Proof.

- There is some method that exists of encoding an entire CSG into a single string of symbols.
- A TM can decide whether, given an input string, it is the "code word" for some CSG
- Let us define the language L (we ran out of Turing's names): $L=\{$ all code words for CSG grammars that cannot be generated by the very grammars they encode\}
- L must be recursive - it will never loop
- L is not context-sensitive - if it were then all its words would be generated by some CSG G. If the code word is in L then it couldn't be generated by the grammar it represents.

Homework 12a

(1) Consider the grammar:

Prod 1	$S \rightarrow A B S \mid \Lambda$
Prod 2	$A B \rightarrow B A$
PROD 3	$B A \rightarrow A B$
PROD 4	$A \rightarrow a$
PROD 5	$B \rightarrow b$

- [4pts each] Derive the following words: abba , babbaaab
- [4pts] Prove every word generated by this grammar has equal number of a 's and b 's (EQUAL)
(2) [4pts] Find a grammar that generates all words with more a 's than b 's (MOREA)
(3) [4pts] Find a grammar that generates all words not in EQUAL

