CSCI 340: Computational Models

The Chomsky Hierarchy

R

Chapter 24 Department of Computer Science

Grammars

- We have yet to discover the "language structure" that define recursively enumerable sets independent of Turing Machines
- Question: Why are context-free languages called "context-free"?

Grammars

- We have yet to discover the "language structure" that define recursively enumerable sets independent of Turing Machines
- *Question:* Why are context-free languages called "context-free"? If there is a production N → t, where N is any nonterminal and T is any terminal, then the replacement of t for N can be made in **any** situation
- English is *not* context-free

Base \rightarrow cowardly Ball \rightarrow dance Baseball \Rightarrow cowardly dance

- We make use of the **context** of words their adjacent words
- *Insight:* Instead of replacing one string character by a string of characters (CFG), we must consider replacing an *entire string* of characters (including both terminals and nonterminals)

Phase-Structure Grammars

A phrase-structure grammar is a collection of three things:

- $\textbf{1} A finite alphabet \Sigma of letters called$ **terminals**
- A finite set of symbols called nonterminals that includes the start symbol S
- A finite list of productions of the form:

```
String 1 \rightarrow \text{string } 2
```

Where string 1 can be any string of terminals and nonterminals that contains at least one nonterminal and string 2 is any string of terminals and nonterminals whatsoever.

A **derivation** in a phrase-structure grammar is a series of working strings beginning with *S*, which, by making substitutions according to the productions, arrives at a string of all terminals.

The **language generated** by a phase-structure grammar is the set of all strings of terminals that can be derived starting at *S*.

Example

$S \to XS \mid \Lambda$	<i>S</i> is the language of zero or more <i>X</i> 's		
$X \to aX \mid a$	X is the language of one or more a's		
$aaaX \rightarrow ba$	anytime we see $aaaX$, we can replace it with ba		
-	$S \Rightarrow XS$	<i>By</i> 1	
	$\Rightarrow XXS$	<i>By</i> 1	
	$\Rightarrow XX$	<i>By</i> 1	
	$\Rightarrow aXX$	Ву 2	
	$\Rightarrow aaXX$	Ву 2	
	\Rightarrow aaaXX	Ву 2	
	$\Rightarrow baXX$	Ву 3	
	\Rightarrow baaXX	Ву 2	
	\Rightarrow baaaX	Ву 2	
	$\Rightarrow bba$	Ву 3	

Phase-Structure Grammars > CFG

Theorem

At least one language that cannot be generated by a CFG can be generated by a phase-structure grammar

Proof.

Consider the following phase-structure grammar over $\Sigma = \{a \ b \}$ PROD 1 $S \rightarrow aSBA$ PROD 2 $S \rightarrow abA$ PROD 3 $AB \rightarrow BA$ PROD 4 $bB \rightarrow bb$ PROD 5 $bA \rightarrow ba$ PROD 6 $aA \rightarrow aa$

Showing the grammar generates $a^n b^n a^n$

To generate the word $a^m b^m a^m$ for some fixed number $m \dots$

Apply Prod 1 exactly (m - 1) times:

a a a . . . *a S BA BA BA* . . . *BA*

(m-1) *a*'s followed by *S* followed by (m-1) *BA*'s

Then PROD 2 once: $a a a a a \dots a$ b $A BA BA BA \dots BA$ m a's followed by b followed by m A's and (m-1) B's

Apply PROD 4 until it can't, PROD 5 until it can't, PROD 6 until it can't $a a a a a \dots a$ $b b b b \dots b$ $a a a a \dots a$ m a's followed by m b's followed by m a's

Showing the grammar **only** generates $a^n b^n a^n$

- Consider some derivation *aSBA* which is of the form: "some *a*'s" *S* "equal number of *A*'s and *B*'s"
- If we never apply PROD 2 then the working string will contain an *S* and not generate any words
- As soon as PROD 2 is applied, we have a string of the form: "*m a*'s" abA "collection of *m A*'s and *m B*'s"
- PROD 3 merely scrambles this collection of *A*'s and *B*'s by shifting all *B*'s to come before all *A*'s.
- Productions 4, 5, and 6 are converting with rules of the form: $tN \rightarrow tt$ where *t* is a terminal and *N* is a nonterminal
- All productions from 4, 5, and 6 are done one-at-a-time from left-to-right. The resulting string is of the form:
 a^(m+1) b b^m a^(m+1)

Phase-Structure Grammars

Theorem

If we have a phase-structure grammar that generates the language L, then there is another grammar that also generates L which has the same alphabet of terminals and in which each production is of the form:

string of nonterminals \rightarrow string of terminals and nonterminals

Where the left side cannot be Λ but the right side can

Proof.

- For each terminal, introduce a new nonterminal and change every occurrence of the "old" symbol to the "new" symbol. For example, *aSbXb* → *bbXYX* becomes *ASBXB* → *BBXYX*
- Add the new productions. From the example above, introduce
 A → a and B → b

These new productions are now of the form $N^+ \rightarrow N^*$ or $N \rightarrow t$

Example of Phase-Structure Modification

Consider the phase-structure grammar over $\Sigma = \{a \ b\}$:

$$S \rightarrow aSBA \mid abA$$
$$AB \rightarrow BA$$
$$bB \rightarrow bb$$
$$bA \rightarrow ba$$
$$aA \rightarrow aa$$
$$S \rightarrow XSBA \mid XYA$$
$$AB \rightarrow BA$$
$$YB \rightarrow YY$$
$$YA \rightarrow YX$$
$$XA \rightarrow XX$$
$$X \rightarrow a$$
$$Y \rightarrow b$$

Is transformed into:

Type 0 Grammars

Definition

A phase-structure grammar is called **type 0** if each production is: non-empty string of nonterminals \rightarrow any string of terminals and nonterminals

- We cannot allow the production "anything → anything"
 This would allow a terminal to yield some other string (even a nonterminal!) This goes against the philosophy of what a terminal is
- We do not want to allow any Λ on the left hand side

This could arbitrarily have letters pop into words indiscriminately (see Genesis 1:3 for " $\Lambda \rightarrow$ light")

The Chomsky Hierarchy

Туре	Name of Languages Generated	Production Restrictions $X \rightarrow Y$	Acceptor
0	Phrase-structure = recursively enumerable	X = any string with nonterminals Y = any string	ТМ
1	Context- sensitive	X = any string with nonterminals Y = any string as long as or longer than X	TMs with bounded (not infinite) TAPE, called linear-bounded automata LBAs*
2	Context-free	X = one nonterminal Y = any string	PDA
3	Regular	X = one nonterminalY = t N or Y = t, wheret is terminal andN is nonterminal	FA

The Chomsky Hierarchy of Grammars

The Chomsky Hierarchy

Type 0 = TM

Theorem

If L is generated by a type 0 grammar G, then there is a TM that accepts L

Proof.

- Insert \$ at the beginning and end of the input, followed by an S $abb\Delta$ becomes $abbS\Delta$
- In the TM, enter a "grand central state" similar to the POP state for PDA simulations of CFGs The field of the TAPE beginning with the second \$ will keep track of the working string. We want to simulate (nondeterministically) the application of all productions

Type 0 = TM

Proof. (continued)

- If we were lucky enough to apply *just* the right productions at just the right points in the working string, we branch to a subprogram that compares the working string to the input string.
 - If the input was derivable, the machine HALTs
 - If the number of words generated was finite and none match, the machine will CRASH
 - If the grammar generates an infinite number of words where the input is not derivable, the machine will LOOP forever
- This NTM accepts any word in the language generated by G and only those words

Theorem

If a language is r.e., it can be generated by a type 0 grammar

Proof is omitted due to scope and length... (10 pages)

Product and Kleene Closure of r.e. Languages

Theorem

If L_1 and L_2 are recursively enumerable languages, then so is L_1L_2 . The recursively enumerable languages are closed under product.

Proof.

- **1** Add the subscript $_1$ to all nonterminals and terminals of L_1
- **2** Add the subscript $_2$ to all nonterminals and terminals of L_2
- **③** Introduce a new production $S \rightarrow S_1 S_2$
- **4** Introduce new productions $t_1 \rightarrow t$ for all terminals in L_1
- **6** Introduce new productions $t_2 \rightarrow t$ for all terminals in L_2

All derivations will be unique and independent between S_1 and S_2 . The newly introduced production of $S \rightarrow S_1S_2$ ensures the concatenation

Product and Kleene Closure of r.e. Languages

Theorem

If L is recursively enumerable, then L^{} is also. The recursively enumerable languages are closed under Kleene star.*

Proof.

• We'd want to introduce something like $S \rightarrow S_1 S \mid \Lambda$ but this won't work!

Multiple S_1 's could potentially interact! Replicate **all** productions of *L* and append ₂ to all nonterminals.

- **2** Then append $_1$ to all nonterminals found in *L*.
- **③** Introduce the following new productions:

 $S \to S_1 S_2 S \mid S_1 \mid \Lambda$

From S we can only produce: $\Lambda \quad S_1 \quad S_1S_2 \quad S_1S_2S_1 \quad S_1S_2S_1S_2 \quad \dots \quad \Box$

Context-Sensitive Grammars

Definition

A generative grammar in which the left side of each production is not longer than the right side is called a **context-sensitive grammar**, denoted CSG, or type 1.

- We presume all human languages are CSGs but cannot mathematically prove it.
- All context-sensitive grammars are *recursive*.

Theorem

For every context-sensitive grammar G, there is some special TM that accepts all the words generated by G and crashes for all other inputs

Context-Sensitive Grammars

Proof.

- 1 All rules make the working string longer
- Since *G* is recursive, the shortest derivation has no "loops"
- We can iteratively apply all valid productions on a working string and ensure unique working strings
- Our TM will generate all words less than an upper length w in a procedure similar to how a TM accepted type 0 grammars
- In a finite number of steps it will either find a derivation for a string, determine there is none, or crash

CSG Decidability

Knowing that a language is *recursive* translates into being able to decide membership for it

Theorem

Given G, a context-sensitive grammar, and w, an input string, it is decidable by a TM whether G generates w

Proof.

- Create the CWL code word for the TM based on *G* described in the previous theorem
- Feed the encoded turing machine of *G* and *w* into the Universal Turing Machine
- Because *w* either halts or crashes on the coded TM, membership is decidable

The Language L

Theorem

There is at least one language L that is recursive but not context sensitive

Proof.

- There is some method that exists of encoding an entire CSG into a single string of symbols.
- A TM can decide whether, given an input string, it is the "code word" for some CSG
- Let us define the language L (we ran out of Turing's names):
 L = {all code words for CSG grammars that cannot be generated by the very grammars they encode}
- *L* must be recursive it will never loop
- *L* is not context-sensitive if it were then all its words would be generated by some CSG *G*. If the code word is in *L* then it couldn't be generated by the grammar it represents. □

Homework 12a

Consider the grammar:

Prod 1 $S \rightarrow ABS \mid \Lambda$ Prod 2 $AB \rightarrow BA$ Prod 3 $BA \rightarrow AB$ Prod 4 $A \rightarrow a$ Prod 5 $B \rightarrow b$

- [4pts each] Derive the following words: *abba*, *babbaaab*
- [4pts] Prove every word generated by this grammar has equal number of *a*'s and *b*'s (EQUAL)
- [4pts] Find a grammar that generates all words with more *a*'s than *b*'s (MOREA)
- [4pts] Find a grammar that generates all words not in EQUAL