

CSCI 340: Computational Models
Turing Machine Languages

Chapter 23 Department of Computer Science

Languages: their Definers and Acceptors

- Regular languages

Defined via regular expressions
Accepted by Finite Automata

- Context-Free languages

Defined via context free grammars
Accepted by Push Down Automata

- ??? languages

Defined via ???
Accepted by Turing Machines
Well, what goes above?

Languages Accepted by Turing Machines

Definition

A language L defined over the alphabet Σ is called recursively enumerable if there is a Turing Machine T that accepts every word in L and either rejects (crashes) or loops forever for every word in the language L^{\prime} (the complement of L). Often abbreviated r.e.

$$
\begin{aligned}
\operatorname{accept}(T) & =L \\
\operatorname{reject}(T)+\operatorname{loop}(T) & =L^{\prime}
\end{aligned}
$$

Remember the turing machine that "looped" forever on a regular language defined by the regular expression $(\mathbf{a}+\mathbf{b})^{*} \mathbf{a a}(\mathbf{a}+\mathbf{b})^{*}$?

$$
\begin{aligned}
\operatorname{accept}(T) & =\text { all words with aa } \\
\operatorname{reject}(T) & =\text { strings without aa ending in } a \\
\operatorname{loop}(T) & =\text { string all without aa ending in } b, \text { or } \lambda
\end{aligned}
$$

Languages Accepted by Turing Machines

Definition

A language L defined over the alphabet Σ is called recursive if there is a Turing Machine T that accepts every word in L and rejects (crashes) for every word in the language L^{\prime} (the complement of L).

$$
\begin{aligned}
\operatorname{accept}(T) & =L \\
\operatorname{reject}(T) & =L^{\prime} \\
\operatorname{loop}(T) & =\emptyset
\end{aligned}
$$

Example

Operations on Recursive Languages

Theorem

If the language L is recursive, then its complement $\left(L^{\prime}\right)$ is also recursive. In other words, the recursive languages are closed under complementation.

Proof.

- No word will loop when "run" on the machine
- Convert the Turing Machine to a Post Machine
- Introduce a REJECT state and have all unaccounted deterministic paths lead to this new REJECT state
- Relabel all REJECT states as ACCEPT and all ACCEPT states as REJECT
- This new machine ACCEPTs everything the original machine REJECTed and REJECTs everything the original machine ACCEPTed

Recursively Enumerable Languages

Theorem

If L is recursively enumerable (r.e.) and L^{\prime} is also recursively enumerable, then L is recursive

A part of the Proof...

Assuming there is a TM T_{1} that accepts L and a TM T_{2} that accepts L^{\prime}. We then construct $T_{2}{ }^{\prime}$ such that:

$$
\begin{aligned}
L^{\prime}=\operatorname{accept}\left(T_{2}\right) & =\operatorname{reject}\left(T_{2}^{\prime}\right) \\
\operatorname{loop}\left(T_{2}\right) & \subset \operatorname{loop}\left(T_{2}^{\prime}\right) \\
\operatorname{reject}\left(T_{2}\right) & \subset \operatorname{loop}\left(T_{2}^{\prime}\right)
\end{aligned}
$$

We then construct $T_{1}{ }^{\prime}$ such that:

$$
\begin{aligned}
\operatorname{accept}\left(T_{1}^{\prime}\right) & =L=\operatorname{loop}\left(T_{2}{ }^{\prime}\right) \\
\operatorname{loop}\left(T_{1}^{\prime}\right) & =L^{\prime}=\operatorname{reject}\left(T_{2}^{\prime}\right)
\end{aligned}
$$

Union

Theorem

If T_{1} and T_{2} are $T M$ s, there exists a $T M, T_{3}$ such that

$$
\operatorname{accept}\left(T_{3}\right)=\operatorname{accept}\left(T_{1}\right)+\operatorname{accept}\left(T_{2}\right)
$$

Proof.

- Make both TMs loop instead of crash
- Nothing stops the two machines from running in alternation given the construction algorithm fully outlined in the prior proof

Intersection

Theorem

The intersection of two recursively enumerable languages is also recursively enumerable

Proof.

Assume $T M_{1}$ is the first TM and $T M_{2}$ is the second TM
(1) Build a TM preprocessor that takes a two-track TAPE and copies from track 1 to track 2. Always start on $T M_{1}$
(2) Convert $T M_{1}$ to a 2-track TAPE doing all of its processing but referring only to the first track. Change HALT of $T M_{1}$ to a state that rewinds the TAPE HEAD to the first cell and branch to the START of $T M_{2}$
(3) Convert $T M_{2}$ into 2-track TAPE doing all of its processing but referring only to the second track.

The Encoding of Turing Machines

We can represent Turing Machines as tables rather than as a picture

From	To	Read	Write	Move
1	1	b	b	R
1	3	a	b	R
3	3	a	b	L
3	2	Δ	b	L

Coding a Turing Machine

Consider the general row:

From	To	Read	Write	Move
X_{1}	X_{2}	X_{3}	X_{4}	X_{5}

- X_{1}, X_{2} are numbers
- $X_{3}, X_{4} \in\{a b \#\}$
- $X_{5} \in\{L R\}$

Encoding the row:

- X_{1} and X_{2} get encoded as: $a^{X_{1}} b a^{X_{2}} b$
- X_{3} and X_{4} get mapped to one of the four strings:

$$
a \rightarrow a a \quad b \rightarrow a b \quad \Delta \rightarrow b a \quad \# \rightarrow b b
$$

- X_{5} is encoded as a if it's L and b if it's R
- Finally, concatenate all parts together

Coding Example

From	To	Read	Write	Move
6	2	b	a	L

- $X_{1}, X_{2}=a^{6} b a^{2} b=$ aaaaaa b aa b
- $X_{3}=" b "=a b$
- $X_{4}=" \mathrm{a} "=a a$
- $X_{5}=" \mathrm{~L} "=a$
- Encoding: aaaaaa baa $\mathbf{b} \mathbf{a b}$ aa \mathbf{a}

Every row is a string of a 's and b 's that is defined by the RE:

$$
\mathbf{a}^{+} \mathbf{b a} \mathbf{a}^{+} \mathbf{b}(\mathbf{a}+\mathbf{b})^{5}
$$

(at least one a) b (at least one a) b (five letters)

Code Word Language

From	To	Read	Write	Move	Code for Each Row
1	1	b	b	R	$a b a b a b a b b$
1	3	a	b	R	$a b a a a b a a a b b$
3	3	a	b	L	$a a a b a a a b a a a b a$
3	2	Δ	b	L	$a a a b a a b b a a b a$

One code word for the entire machine is:

> ababababbabaaabaaabbaaabaaabaaabaaaabaabbaaba

But this isn't the only code for the machine because the "order" of the rows in the table isn't rigid.
$\mathrm{CWL}=$ the language defined by $\left(\mathbf{a}^{+} \mathbf{b a} \mathbf{a}^{+} \mathbf{b}(\mathbf{a}+\mathbf{b})^{5}\right)^{*}$

A Non-Recursively Enumerable Language

- The code word for a TM contains all the information of the TM
- Since it's just composed of a 's and b 's it could be used as input
- What if we run the TM with the code word as input?

Definition

The Language ALAN is defined as the following:
ALAN $=\{$ all the words in CWL that are not accepted by the TMs they represent or that do not represent any TM \}

Example

Code word: abaabababb $\in A L A N$

More on ALAN

- If a TM accepts everything, then its code word is not in ALAN
- If a TM rejects everything, then its code word is in ALAN
- If a code word is malformed then its in ALAN
- The code word for a TM accepting PALINDROME is not a PALINDROME; therefore, this code word is in ALAN

Claim: ALAN is NOT recursively enumerable

Question: Is code (T) a word in the language ALAN or not?

CASE 1: code(T) is in ALAN

CLAIM

REASON

1. T accepts ALAN.
2. ALAN contains no code word that is accepted by the machine it represents.
3. code (T) is in ALAN.
4. T accepts the word code(T).
5. code (T) is not in ALAN.
6. Contradiction.
7. code (T) is not in ALAN.
8. Definition of T.
9. Definition of ALAN.
10. Hypothesis.
11. From 1 and 3.
12. From 2 and 4.
13. From 3 and 5.
14. The hypothesis (3) must be wrong because it led to a contradiction.

CASE 2: $\operatorname{code}(T)$ is not in ALAN

CLAIM

REASON

1. T accepts ALAN.
2. If a word is not accepted by the machine it represents, it is in ALAN.
3. code (T) is not in ALAN.
4. code (T) is not accepted by T.
5. code (T) is in ALAN.
6. Contradiction.
7. code (T) is in ALAN.
8. Definition of T.
9. Definition of ALAN.
10. Hypothesis.
11. From 1 and 3.
12. From 2 and 4.
13. From 3 and 5.
14. The hypothesis (3) must be wrong because it led to a contradiction.

ALAN is not R.E. - and UTMs

Theorem

Not all languages are recursively enumerable
See: liar's paradox

The Universal Turing Machine

A universal TM, a UTM, is a TM that can be fed as input a string composed of two parts:
(1) an encoded program of any TM T followed by a marker
(2) data

The operation of the UTM is that, no matter what machine T and no matter what the data string is, the UTM will operate exactly on the data as if it were T. The TAPE-HEAD would also point to exactly what T would have.

Theorem

Not all R.E. Languages are Recursive

- We have already defined a UTM.
- We have already defined ALAN as all CWL words that are not accepted by the TMs they might represent.
- Now consider...

Definition

Let MATHISON be the language of all CWL words that do represent TMs and are accepted by the very machines they do represent

Theorem

MATHISON is recursive enumerable

Proof.

The TM that accepts MATHISON is like a UTM. When we start with an input string, S, we convert the tape to the following:

$\#$	S	$\$$	S	$\Delta \ldots$

And run the machine

Recursively Enumerable and Recursive

Theorem

The complement of a recursively enumerable language might not be recursively enumerable

Proof.

Because CWL is regular, CWL' is also regular. Because CWL' is regular, it's also recursively enumerable. $L=$ CWL' + MATHISON is recursively enumerable, but it's complement ($L^{\prime}=A L A N$) is not

Theorem

There are recursively enumerable languages that are not recursive

Proof.

The language L defined is not recursive because that means ALAN would be r.e. (but it is not)

Decidability

Definition

Suppose we are given an input string w and a TM T. Can we tell whether or not T halts on w ? This is called the halting problem.

Theorem

There is no TM that can accept any string, w, and any coded TM, T, and always decide correctly whether T halts on w. In other words, the halting problem cannot be decided by a TM.

Proof.

- Assume a TM answers the halting problem - call it HP
- Modify HP (creating $H P_{2}$) by making it loop forever if it was about to print "yes" and halt. If it was to print "no" make no change
Continued...

The Halting Problem

Proof.

- Add a subprogram (preprocessor) to the front of $H P_{2}$
- Take the left-of-\# part and decide whether it is a word in CWL.
- If the input is, then the preprocessor deletes the w part of the input and puts two copies of the same string onto the TAPE and reruns $H P_{2}$
- This means $H P_{2}$ will analyze whether the code word passed accepts its own code word as input. If the answer is "yes" then the modified machine loops forever
- If the answer is "no" then it prints "no" and halts.
- $H P_{2}$ accepts exactly the language ALAN. But ALAN is not recursively enumerable

Other Theorems of Decidability

Theorem

There is no TM that can decide for every TM - fed into it in encoded form - whether or not it accepts the word λ

Theorem

There is no TM that - when fed the code word for an arbitrary TM can always decide whether the encoded TM accepts any words. In other words, the emptiness question for r.e. languages cannot be decided by TM.

Theorem

There does not exist a TM that can decide - for any encoded TM fed into it - whether or not the language of T is finite or infinite

Homework 11b

3 [4pts each] Show that each of the following languages is recursive by finding a TM that accepts them and crashes on strings in their complement

- EVEN-EVEN
- EQUAL
(4) [4pts each] Decode the following words from CWL into their corresponding TMs and determine which are in ALAN and which are in MATHISON
- abaabbbbab
- abaaabaaabbaaabaababbbb
- abaaabaaabaaaabaababbab

