
CSCI 340: Computational Models

Minsky’s Theorem

Chapter 21 Department of Computer Science



The Two-Stack PDA

• Turing machines never seemed like a natural extension —
comparing FAs to PDAs
• There is no such extension between PDAs and TMs
• Insight: the addition of a PUSHDOWN STACK made a

considerable improvement in the power of an FA
• Idea: What would happen if we add another PUSHDOWN

STACK to a PDA? or 3? or 70?

1 / 1



Two-Pushdown Stack Machine — 2PDA

Definition
• A two-pushdown stack machine, denoted 2PDA, is like a

PDA except that it has two PUSHDOWN STACKS
1 STACK1
2 STACK2

• When we push a character, we must indicate which stack we are
PUSHing onto. We do this by renaming PUSH to PUSH1 and
introduce a PUSH2 state.
• When we pop a character from a stack, we need to indicate

which stack we are POPing from. We do this by renaming POP
to POP1 and introduce a POP2 state.
• We also will insist that 2PDAs are deterministic

2 / 1



2PDA Example

START

READ1

PUSH1 a

POP1

PUSH2 b

READ2

POP1

POP2

READ3

POP2

ACCEPT

a

b

a

b a

∆

ba

∆

∆

3 / 1



Just Another TM

Theorem

2PDA = TM

In other words, any language accepted by a 2PDA can be accepted by
some TM and any language accepted by a TM can be accepted by some
2PDA.

Proof.
Part 1 — Modeling a 2PDA on a TM
• A 2PDA has three locations where it can store information:

1 INPUT TAPE
2 STACK1
3 STACK2

• A TM has one location where it can store information: the TAPE
• Model the TAPE to store INPUT TAPE, STACK1, and STACK2

(continued...)
4 / 1



Just Another TM

Proof.

• Assume # and $ are symbols not part of Σ or Γ
• Store on the TAPE the following:

INPUT TAPE # STACK1 $ STACK2

• Always have the TAPE HEAD point at the # a�er any operation
• Simulating READ

1 Move the TAPE HEAD to the le� and find the rightmost “front” ∆
2 Move one to the right to find the next input le�er
3 If this character is #, the input has been exhausted
4 Otherwise, change this character into ∆
5 Branch according to what was read. In each branch, move down

to the #, then start simulating the next state

(continued...)

5 / 1



Just Another TM

Proof.
• Simulating POP1 and POP2

• Move to $ if POP2; otherwise stay at #
• Move to the right. If $ is read, then STACK1 is empty
• Else, we are removing the current character from our stack.
• Branch to a unique path based on the character read
• Call the DELETE subprogram
• Rewind back to # and start simulating the next state

• Simulating PUSH1 and PUSH2
• Move to $ if PUSH2; otherwise stay at #
• Call the INSERT subprogram
• Rewind back to # and start simulating the next state

• When the 2PDA branches to ACCEPT, enter HALT

(continued...)

6 / 1



Just Another TM

Proof.
Part 2 — Modeling a TM on a 2PDA
• Or... how about we don’t do that
• Instead, why don’t we model a Post Machine on a 2PDA?

1 Transfer all of the PM STORE to STACK1 (use STACK2 as bu�er
to maintain order)

2 Emulate ADD X by moving everything from STACK1 to STACK2,
PUSHing X onto STACK1, then POP everything from STACK2
back to STACK1

3 Emulate READ by just calling POP1
4 REJECTs can be discarded or kept the same
5 ACCEPTs remain exactly the same

• Key Insight: STACK2 is only used to initialized STACK1 and to
simulate ADD

We have now shown 2PDA ⊆ TM and TM ⊆ 2PDA �

7 / 1



nPDAs

Theorem
Any language accepted by a PDA with n STACKs (where n is 2 or more),
called an nPDA, can also be accepted by some TM. In power we have:

nPDA = TM if n ≥ 2

Proof.

• Use similar representation of 2PDAs on a TM by introducing
new separators: #1, #2, ... , #n

• Relevant PUSH and POP operations will function on the TM
• Therefore, nPDA = TM
• 2PDA was already determined to be as powerful as TM
• 2PDA = nPDA �

FA = TG = NFA < DPDA < PDA < 2PDA = nPDA = PM = TM
8 / 1



An Aside — Structure of the Book

Part 1
Regular Expressions, Finite Automata, Transition Graphs, Kleene’s
Theorem, Finite Automata with Output, Regular Languages,
Nonregular Languages (Pumping Lemma), Decidability
All of these are equivalent to a 0PDA

Part 2
Context-Free Grammars, Grammatical Format, Pushdown Automata,
CFG=PDA, Non-Context-Free Languages (Pumping Lemma),
Context-Free Languages, Decidability
All of these are equivalent to a 1PDA

Part 3
Turing Machines, Post Machines, Minsky’s Theorem...
All of these are equivalent to a 2PDA

9 / 1



Homework 11a

1 [4pts each] VERYEQUAL is the language (Σ = {a b c}) as all
strings that have as many total a’s as total b’s as total c’s
• Draw a TM that accepts VERYEQUAL
• Draw a PM that accepts VERYEQUAL
• Draw a 3PDA that accepts VERYEQUAL
• Draw a 2PDA that accepts VERYEQUAL

2 [4pts] Draw a 2PDA that accepts EVEN-EVEN and keeps at
most two le�ers in its STACKs

10 / 1


