

CSCI 340: Computational Models
Minsky's Theorem

Chapter 21 Department of Computer Science

The Two-Stack PDA

- Turing machines never seemed like a natural extension comparing FAs to PDAs
- There is no such extension between PDAs and TMs
- Insight: the addition of a PUSHDOWN STACK made a considerable improvement in the power of an FA
- Idea: What would happen if we add another PUSHDOWN STACK to a PDA? or 3 ? or 70?

Two-Pushdown Stack Machine - 2PDA

Definition

- A two-pushdown stack machine, denoted 2PDA, is like a PDA except that it has two PUSHDOWN STACKS
(1) STACK $_{1}$
(2) STACK $_{2}$
- When we push a character, we must indicate which stack we are PUSHing onto. We do this by renaming PUSH to PUSH_{1} and introduce a PUSH_{2} state.
- When we pop a character from a stack, we need to indicate which stack we are POPing from. We do this by renaming POP to POP_{1} and introduce a POP_{2} state.
- We also will insist that 2PDAs are deterministic

2PDA Example

Just Another TM

Theorem

$$
2 P D A=T M
$$

In other words, any language accepted by a 2PDA can be accepted by some TM and any language accepted by a TM can be accepted by some 2PDA.

Proof.

Part 1 - Modeling a 2PDA on a TM

- A 2PDA has three locations where it can store information:
(1) INPUT TAPE
(2) STACK ${ }_{1}$
(3) STACK ${ }_{2}$
- A TM has one location where it can store information: the TAPE
- Model the TAPE to store INPUT TAPE, STACK $_{1}$, and STACK ${ }_{2}$ (continued...)

Just Another TM

Proof.

- Assume \# and \$ are symbols not part of Σ or Γ
- Store on the TAPE the following:

$$
\text { INPUT TAPE }^{\#} \quad \text { STACK }_{1} \quad \$ \quad \text { STACK }_{2}
$$

- Always have the TAPE HEAD point at the \# after any operation
- Simulating READ
(1) Move the TAPE HEAD to the left and find the rightmost "front" Δ
(2) Move one to the right to find the next input letter
(3) If this character is \#, the input has been exhausted
(4) Otherwise, change this character into Δ
(5) Branch according to what was read. In each branch, move down to the \#, then start simulating the next state
(continued...)

Just Another TM

Proof.

- Simulating POP_{1} and POP_{2}
- Move to $\$$ if POP_{2}; otherwise stay at \#
- Move to the right. If $\$$ is read, then STACK $_{1}$ is empty
- Else, we are removing the current character from our stack.
- Branch to a unique path based on the character read
- Call the DELETE subprogram
- Rewind back to \# and start simulating the next state
- Simulating PUSH_{1} and PUSH_{2}
- Move to \$ if PUSH_{2}; otherwise stay at \#
- Call the INSERT subprogram
- Rewind back to \# and start simulating the next state
- When the 2PDA branches to ACCEPT, enter HALT
(continued...)

Just Another TM

Proof.

Part 2 - Modeling a TM on a 2PDA

- Or... how about we don't do that
- Instead, why don't we model a Post Machine on a 2PDA?
(1) Transfer all of the PM STORE to STACK ${ }_{1}$ (use STACK $_{2}$ as buffer to maintain order)
(2) Emulate ADD X by moving everything from STACK $_{1}$ to STACK $_{2}$, PUSHing X onto STACK $_{1}$, then POP everything from STACK $_{2}$ back to STACK ${ }_{1}$
(3) Emulate READ by just calling POP $_{1}$
(4) REJECTs can be discarded or kept the same
(5) ACCEPTs remain exactly the same
- Key Insight: STACK $_{2}$ is only used to initialized STACK $_{1}$ and to simulate ADD

We have now shown $2 \mathrm{PDA} \subseteq \mathrm{TM}$ and $\mathrm{TM} \subseteq 2 \mathrm{PDA}$

$n P D A s$

Theorem

Any language accepted by a PDA with n STACKs (where n is 2 or more), called an nPDA, can also be accepted by some TM. In power we have:

$$
n P D A=T M \quad \text { if } n \geq 2
$$

Proof.

- Use similar representation of 2PDAs on a TM by introducing new separators: $\#_{1}, \#_{2}, \ldots, \#_{n}$
- Relevant PUSH and POP operations will function on the TM
- Therefore, n PDA $=$ TM
- 2PDA was already determined to be as powerful as TM
- $2 \mathrm{PDA}=n \mathrm{PDA}$

$$
\mathrm{FA}=\mathrm{TG}=\mathrm{NFA}<\mathrm{DPDA}<\mathrm{PDA}<2 \mathrm{PDA}=n \mathrm{PDA}=\mathrm{PM}=\mathrm{TM}
$$

An Aside - Structure of the Book

Part 1

Regular Expressions, Finite Automata, Transition Graphs, Kleene's Theorem, Finite Automata with Output, Regular Languages, Nonregular Languages (Pumping Lemma), Decidability All of these are equivalent to a OPDA

Part 2

Context-Free Grammars, Grammatical Format, Pushdown Automata, CFG=PDA, Non-Context-Free Languages (Pumping Lemma), Context-Free Languages, Decidability All of these are equivalent to a 1PDA

Part 3

Turing Machines, Post Machines, Minsky's Theorem...
All of these are equivalent to a 2PDA

Homework 11a

(1) [4pts each] VERYEQUAL is the language $(\Sigma=\{a b c\})$ as all strings that have as many total a 's as total b 's as total c 's

- Draw a TM that accepts VERYEQUAL
- Draw a PM that accepts VERYEQUAL
- Draw a 3PDA that accepts VERYEQUAL
- Draw a 2PDA that accepts VERYEQUAL
(2) [4pts] Draw a 2PDA that accepts EVEN-EVEN and keeps at most two letters in its STACKs

