

CSCI 340: Computational Models

CFG = PDA

Building a PDA for Every CFG

Theorem

Given a CFG that generates the language L, there is a PDA that accepts exactly L

Theorem

Given a PDA that accepts the language L, there exists a CFG that accepts exactly L

Both of these theorems were discovered independently by Schützenberger, Chomsky, and Evey

CFG to PDA Algorithm

Note: We assume the CFG grammar is defined in CNF

 $X_3 \rightarrow a$

 $X_4 \rightarrow a$

 $X_5 \rightarrow b$

Two forms:

$$N_i \to N_i N_k$$
$$N_i \to t$$

Handling form $N_i \rightarrow N_j N_k$:

Note: non-terminals are pushed in reverse order

Handling form $N_i \rightarrow t$:

CFG to PDA Algorithm

Start of machine:

End of machine:

If a language should accept λ , include:

Example

Consider the following grammar (in CNF):

$$S \rightarrow SB$$

$$S \rightarrow AB$$

$$A \rightarrow CC$$

$$B \rightarrow b$$

$$C \rightarrow a$$

Example

PDA to CFG

"This is a long proof by constructive algorithm. In fact, it is unquestionably the most torturous proof in the book; parental consent is required"

Pages 327 - 347

PDA to CFG

"This is a long proof by converted veagorithm. In fact, it is unque it ably the most that bus proof in the book of the tacor entire required"

Pages 327 – 347