

CSCI 340: Computational Models
Regular Expressions

Chapter 4

Department of Computer Science

Yet Another New Method for Defining Languages

Given the Language:

$$
L_{1}=\left\{x^{n} \text { for } n=1 \begin{array}{llll}
1 & 2 & 3 & \ldots
\end{array}\right\}
$$

We could easily change the sequence for n :

$$
L_{2}=\left\{x^{n} \text { for } n=\begin{array}{lllll}
1 & 3 & 5 & 7 & \ldots
\end{array}\right\}
$$

But if we change the sequence for n it can be difficult:

$$
L_{3}=\left\{x^{n} \text { for } n=141916 \ldots\right\}
$$

Or just unwieldy / non-definitive:

$$
L_{3}=\left\{x^{n} \text { for } n=348822 \ldots\right\}
$$

We need a notation for something more precise than the ellipsis

Reappearance of Kleene Star

Reconsider the language from Chapter 2:

$$
L_{4}=\left\{\begin{array}{llllll}
\lambda & x & x x & x x x & x x x x & \ldots
\end{array}\right\}
$$

We presented one method for indicating this set as a closure:

$$
\text { Let } S=\{x\} \text {. Then } L_{4}=S^{*}
$$

Or in shorthand:

$$
L_{4}=\{x\}^{*}
$$

Let's now introduce a Kleene star applied to a letter rather than a set:

$$
\mathbf{x}^{*}
$$

We can think of the star as anknown or undetermined power.

Defining Languages

- We should not confuse \mathbf{x}^{*} with L_{4} as they are not equivalent
- L_{4} is semantically a language, \mathbf{x}^{*} is a language defining symbol
- We can define a language as follows: $L_{4}=\operatorname{language}\left(\mathbf{x}^{*}\right)$

Example

$$
\begin{gathered}
\Sigma=\{a b\} \\
L=\{a a b a b b a b b b a b b b b \ldots\} \\
L=\text { language }\left(\mathbf{a} \quad \mathbf{b}^{*}\right) \\
L=\text { language }\left(\mathbf{a} \mathbf{b}^{*}\right)
\end{gathered}
$$

Note: the Kleene star is applied to the letter immediately preceding

Applying Kleene Star to an Entire String

- Closure to entire substrings requires forced precedence
- We can accomplish this by grouping with parentheses
- For example: $(\mathbf{a b})^{*}=\lambda$ or $a b$ or $a b a b$ or $a b a b a b \ldots$

We can also use + to represent one-or-more

Theorem

$\mathbf{x x}^{*}=\mathbf{x}^{+}$

Proof.

$L_{1}=$ language $\left(\mathbf{x x}^{*}\right) \quad L_{2}=\operatorname{language}\left(\mathbf{x}^{+}\right)$
language $\left(\mathbf{x}^{*}\right)=\lambda \quad \begin{array}{llll} & x & x x & x x x\end{array} \quad \ldots$
language $\left(\begin{array}{llll}\mathbf{x} & \mathbf{x}^{*}\end{array}\right)=x \lambda \quad x x \quad x x x \quad x x x x \quad \ldots$
language $\left(\mathbf{x x}^{*}\right)=\begin{array}{lllll}x & x x & x x x & x x x x & \ldots\end{array}$
language $\left(\mathbf{x x}^{*}\right)=\operatorname{language}\left(\mathbf{x}^{+}\right)=\begin{array}{llll}x & x x & x x x & x x x x\end{array} \quad \ldots$

Language Examples

Example

The language L_{1} can be defined by any of the expressions below:

$$
\mathbf{x x}^{\mathbf{x x}^{*}} \quad \mathbf{x}^{+} \quad \mathbf{x x}^{*} \mathbf{x}^{*} \quad \mathbf{x}^{*} \mathbf{x x}^{*} \quad \mathbf{x}^{+} \mathbf{x}^{*} \quad \mathbf{x}^{*} \mathbf{x}^{*} \mathbf{x}^{*} \mathbf{x x}^{*}
$$

Remember: \mathbf{x}^{*} can always be λ

Example

The language defined by the expression

$$
\mathbf{a} \mathbf{b}^{*} \mathbf{a}
$$

is the set of all strings of a 's and b 's that have at least two letters that
(1) start and end with a
(2) only have b 's in between

Language Examples

Example

The language of the expression

$$
\mathbf{a}^{*} \mathbf{b}^{*}
$$

contains all of the strings of a 's and b 's in which all the a 's (if any) come before all the b 's (if any)

$$
\text { language }\left(\mathbf{a}^{*} \mathbf{b}^{*}\right)=\left\{\begin{array}{lll}
\lambda & a & b \\
& a a b b b a a a & a b b b b b \text { aaaa } \ldots .
\end{array}\right.
$$

Note

It is very important to note that

$$
\mathbf{a}^{*} \mathbf{b}^{*} \neq(\mathbf{a b})^{*}
$$

Language Examples

Example

Consider the language T defined over the alphabet $\Sigma=\left\{\begin{array}{lll}a & b & c\end{array}\right\}$

$$
T=\left\{\begin{array}{lll}
a & c & a b \\
c b & a b b c b b & a b b b c b b b \\
a b b b b & c b b b b \ldots
\end{array}\right\}
$$

We may formally define the language as follows:

$$
T=\text { language }\left((\mathbf{a}+\mathbf{c}) \mathbf{b}^{*}\right)
$$

Or in English as:

$$
T=\text { language(either } a \text { or } c \text { followed by some } b \text { 's) }
$$

Note: parens force precedence change: selection before concatenation

Language Examples

Example

Consider the language L defined over the alphabet $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$

$$
L=\{a a a \text { aab } a b a a b b \text { baa bab bba bbb }\}
$$

- What is the pattern?
- How can we write a language expression for this?
- How can we generalize this?
- How can we represent "choose any single character" from Σ ?

Regular Expressions

Regular Language - a language which can be expressed as a regular expression

Definition for Regular Expression

(1) Every letter of Σ can be made into a regular expression. λ is a regular expression.
(2) If \mathbf{r}_{1} and \mathbf{r}_{2} are regular expressions, then so are:
(i) $\left(\mathbf{r}_{1}\right)$
(ii) $\mathbf{r}_{1} \mathbf{r}_{2}$
(iii) $\mathbf{r}_{1}+\mathbf{r}_{2}$
(iv) $\left(\mathbf{r}_{1}{ }^{*}\right)$
(3) Nothing else is a regular expression

Note: we could add $\mathbf{r}_{1}{ }^{+}$but we can rewrite it as $\mathbf{r}_{1} \mathbf{r}_{1}{ }^{*}$

Defining Some Regular Expressions

Chalkboard Problems

(1) All words that begin with an a and end with a b
(2) All words that contain exactly two a 's
(3) All words that contain exactly two a 's and start with b
(4) All words that contain two or more a 's
(5) All words that contain two or more a 's that end in b
(6) All words of length 3 or higher which contain two a 's in a row

A More Complicated Example

Language of all words that have at least one a and one b

$$
(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}(\mathbf{a}+\mathbf{b})^{*}
$$

which can also be expressed as
<arbitrary> a <arbitrary> b <arbitrary>

This mandates that a must be found before b.
The unhandled case can be matched with:

$$
\mathbf{b b}^{*} \mathbf{a} \mathbf{a}^{*}
$$

One of these must be true for our expression to be matched:

$$
(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}(\mathbf{a}+\mathbf{b})^{*}+\mathbf{b} \mathbf{b}^{*} \mathbf{a} \mathbf{a}^{*}
$$

Confusing Equivalences

Consider from the last slide

$$
(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}(\mathbf{a}+\mathbf{b})^{*}+\mathbf{b} \mathbf{b}^{*} \mathbf{a} \mathbf{a}^{*}
$$

If we wanted to include strings of all a 's or b 's we would use:

$$
\mathbf{a}^{*}+\mathbf{b}^{*}
$$

This would mean that we could define a regular expression which accepts any sequence of a 's and b 's:

$$
(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*} \mathbf{b}(\mathbf{a}+\mathbf{b})^{*}+\mathbf{b} \mathbf{b}^{*} \mathbf{a} \mathbf{a}^{*}+\mathbf{a}^{*}+\mathbf{b}^{*}
$$

but this is simply just

$$
(\mathbf{a}+\mathbf{b})^{*}
$$

These are not obviously equivalent

Algebraic Equivalence Need Not Apply

An Analysis of $(\mathbf{a}+\mathbf{b})^{*}$

$$
\begin{aligned}
& (\mathbf{a}+\mathbf{b})^{*}=(\mathbf{a}+\mathbf{b})^{*}+(\mathbf{a}+\mathbf{b})^{*} \\
& (\mathbf{a}+\mathbf{b})^{*}=(\mathbf{a}+\mathbf{b})^{*}(\mathbf{a}+\mathbf{b})^{*} \\
& (\mathbf{a}+\mathbf{b})^{*}=\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}+\mathbf{b}(\mathbf{a}+\mathbf{b})^{*}+\lambda \\
& (\mathbf{a}+\mathbf{b})^{*}=(\mathbf{a}+\mathbf{b})^{*} \mathbf{a b}(\mathbf{a}+\mathbf{b})^{*}+\mathbf{b}^{*} \mathbf{a}^{*}
\end{aligned}
$$

All of these are equal - O_o

Some Algebra Works!

Let V be the language of all strings of a 's and b 's in which the strings are either all b 's or else there is an a followed by some b 's. Let V also contain the word λ.

$$
V=\{\lambda a b a b b b a b b b b b a b b b b b b b \ldots\}
$$

We can then define V by the expression:

$$
\mathbf{b}^{*}+\mathbf{a} \mathbf{b}^{*}
$$

Where λ is embedded into the term \mathbf{b}^{*}. Alternatively, we could define V by the expression

$$
(\lambda+\mathbf{a}) \mathbf{b}^{*}
$$

This gives us an option of having a a or nothing! Since we could always write $\mathbf{b}^{*}=\lambda \mathbf{b}^{*}$, we demonstrate the distributive property

$$
\lambda \mathbf{b}^{*}+\mathbf{a} \mathbf{b}^{*}=(\lambda+\mathbf{a}) \mathbf{b}^{*}
$$

Concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be
$S T=\{$ all combinations of all string S followed with a string from $T\}$

Example

$$
\begin{gathered}
S=\left\{\begin{array}{lll}
a & a a & a a a
\end{array}\right\} \quad T=\left\{\begin{array}{ll}
b b & b b b
\end{array}\right\} \\
S T=\left\{\begin{array}{lllll}
a b b & a b b b & a a b b & a a b b b & a a a b b \\
a a a b b b
\end{array}\right\}
\end{gathered}
$$

Rewritten as a Regular Expression

$$
\begin{gathered}
(\mathbf{a}+\mathbf{a a}+\mathbf{a a a})(\mathbf{b b}+\mathbf{b b b}) \\
= \\
\mathbf{a b b}+\mathbf{a b b b}+\mathbf{a a b b}+\mathbf{a} \mathbf{a b b}+\mathbf{a a a b b}+\mathbf{a a b b b}
\end{gathered}
$$

Concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be
$S T=\{$ all combinations of all string S followed with a string from $T\}$

Example

$$
\left.\begin{array}{c}
S=\left\{\begin{array}{lll}
a & b b & b a b
\end{array}\right\} \quad T=\left\{\begin{array}{ll}
a & a b
\end{array}\right\} \\
S T=\left\{\begin{array}{lllll}
a a & a a b & b b a & b b a b & b a b a
\end{array} b a b a b\right.
\end{array}\right\}
$$

Rewritten as a Regular Expression

$$
\begin{gathered}
(a+b b+b a b)(a+a b) \\
= \\
\mathbf{a a}+\mathbf{a} a b+\mathbf{b b a}+\mathbf{b} \mathbf{b a b}+\mathbf{b a b a}+\mathbf{b a b a b}
\end{gathered}
$$

Concatenation

What are the regular expressions for the concatenation of the two sets in each example? Give both the simple and "distributed" forms

Example

$$
\begin{gathered}
P=\left\{\begin{array}{lll}
a b b & b a b
\end{array}\right\} \\
Q=\{\lambda b b b b\}
\end{gathered}
$$

Example

$$
\begin{gathered}
M=\left\{\begin{array}{lll}
& x & x x
\end{array}\right\} \\
N=\{\lambda \text { y yy yyy yyyy } \ldots\}
\end{gathered}
$$

Associating a Language with Every RE

The rules below define the language associated with any RE
(1) The language associated with the regular expression that is just a single letter is that one-letter word alone and the language associated with λ is just $\{\lambda\}$, a one-word language
(2) If \mathbf{r}_{1} is a regular expression associated with language L_{1} and \mathbf{r}_{2} is a regular expression associated with the language L_{2} then
(i) RE $\left(\mathbf{r}_{1}\right)\left(\mathbf{r}_{2}\right)$ is associated with $L_{1} \times L_{2}$

$$
\text { language }\left(\mathbf{r}_{1} \mathbf{r}_{2}\right)=L_{1} L_{2}
$$

(1) RE $\mathbf{r}_{1}+\mathbf{r}_{2}$ is associated with $L_{1} \cup L_{2}$

$$
\text { language }\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)=L_{1}+L_{2}
$$

(17) RE $\mathbf{r}_{1}{ }^{*}$ is $L_{1}{ }^{*}$ (the Kleene closure)

$$
\operatorname{language}\left(\mathbf{r}_{\mathbf{1}}{ }^{*}\right)=L_{1}{ }^{*}
$$

Expressing a Finite Language as RE

Theorem

If L is a finite language (a language with only finitely many words), then L can be defined by a regular expression

Proof.

To make one RE that defines the language L, turn all the words in L into boldface type and stick pluses between them. Violá. For example, the RE defining the language

$$
L=\{a a a b b a b b\}
$$

is

$$
\mathbf{a a}+\mathbf{a b}+\mathbf{b} \mathbf{a}+\mathbf{b} \mathbf{b} \quad \text { OR } \quad(\mathbf{a}+\mathbf{b})(\mathbf{a}+\mathbf{b})
$$

The reason this "trick" only works for finite languages is that an infinite language would yield an infinitely-long regular expression (which is forbidden)

EVEN-EVEN

$$
E=\left[\mathbf{a} \mathbf{a}+\mathbf{b} \mathbf{b}+(\mathbf{a b}+\mathbf{b a})(\mathbf{a} \mathbf{a}+\mathbf{b} \mathbf{b})^{*}(\mathbf{a b}+\mathbf{b} \mathbf{a})\right]
$$

This regular expression represents the collection of all words that are made up of "syllables" of three types:

$$
\begin{aligned}
\text { type }_{1} & =\mathbf{a a} \\
\text { type }_{2} & =\mathbf{b} \mathbf{b} \\
\text { type }_{3} & =(\mathbf{a b}+\mathbf{b a})(\mathbf{a a}+\mathbf{b} \mathbf{b})^{*}(\mathbf{a b}+\mathbf{b a}) \\
E & =\left[\text { type }_{1}+\text { type }_{2}+\text { type }_{3}\right]
\end{aligned}
$$

Question 1

What does this Regular Expression "do" ?

Question 2

What are the first 12 strings matched by this RE?

Homework 2a

(1) For each of the problems below, give a regular expression which only accepts the following. Assume $\Sigma=\left\{\begin{array}{ll}a & b\end{array}\right\}$
(1) All strings that begin and end with the same letter
(2) All strings in which the total number of a 's is divisible by 3
(3) All strings that end in a double letter
(2) Show the following pairs of regular expressions define the same language
(1) (ab)* and $\mathbf{a}(\mathbf{b a})^{*}$
(2) ($\left.\mathbf{a}^{*} \mathbf{b b b}\right)^{*} \mathbf{a}^{*}$ and $\mathbf{a}^{*}\left(\mathbf{b b b a}^{*}\right)^{*}$
(3) Describe (in English phrases) the languages associated with the following regular expressions
(1) $(\mathbf{a}+\mathbf{b})^{*} \mathbf{a}(\lambda+\mathbf{b b b b})$
(2) $\left(\mathbf{a}(\mathbf{a})^{*} \mathbf{b}(\mathbf{b} \mathbf{b})^{*}\right)^{*}$

3 $((\mathbf{a}+\mathbf{b}) \mathbf{a})^{*}$

