
CSCI 340: Computational Models

Languages

Chapter 2 Department of Computer Science

What is a Language?

• English: “le󰿣ers”, “words”, “sentences”
• Programming: “keywords”, “variables”, “numbers”, “symbols”
• General: language structure – decision of whether a given string
of units is “matched” or valid

1 / 22

Important Terms

• alphabet – finite set of fundamental units out of which we build
structures.

• language – a certain specified set of strings of characters from
the alphabet

• words – strings which are permissible in the language
• empty string or null string – a string which has no le󰿣ers (λ)
• null set – denoted as 󳑘

󲪞estion

Is there a di󰎎erence between empty string and an empty language?

2 / 22

An Aside on Set Theory

Assume

• L is a language
• + is “union of sets” operator
• 󳑘 is empty set
• λ is empty string

Claim 1
L + {λ} 󲧰 L

Claim 2
L + 󳑘 = L

This implies that 󳑘 is a valid definition for a language

3 / 22

The English Languages

Alphabet

Σ = {a b c d e . . . z ′ −}

Words
ENGLISH-WORDS = {all the words in a standard dictionary}

Problem: How can we represent sentences?

4 / 22

The Real English Languages

Alphabet

Γ = entries of ENGLISH-WORDS + {space} + {punctuation}

Words (a.k.a. English Sentences)

• Must rely on grammatical rules of English
• There are infinitely many

• I ate one apple.
• I ate two apples.
• I ate three apples.
•

We can list all rules of the grammar to give a finite description for an
infinite language. This will make “I ate three Tuesdays” valid!

5 / 22

Defining a Language

Language Defining Rules

1 Tell us how to test a string of alphabet le󰿣ers that we are
presented with

2 Tell us how to construct all of the words in the language by
some clear procedure

Example

Σ = {x}

L1 = {x xx xxx xxxx . . .}
alternatively,

L1 = {xn for n = 1 2 3 . . .}

6 / 22

Working with a Language

Null String?

A language does not need to accept λ. L1 doesn’t

Concatenation

• Two strings wri󰿣en side by side yield a new string
• xn concatenated with xm is xn + m

Symbols

• We can designate a word in a given language by a new symbol
• Let a = xx and b = xxx
• Therefore, ab = xxxxxx

• Two words of L concatenated are not guaranteed to produce
another word in L

7 / 22

Example: Numbers

Example

Σ = {0 1 2 3 4 5 6 7 8 9}
L3 = { any finite string of Σ le󰿣ers that doesn’t start with 0}

A subset of L3 might look like:

L3 = {1 2 3 4 5 6 7 8 9 10 11 12 . . .}

If we want to allow the string (word) 0, we could say:

L3 = { any finite string of Σ le󰿣ers that, if it starts with 0,

has no more le󰿣ers a󰎗er the first }

8 / 22

Example: Length

We define the function length of a string to be the number of le󰿣ers
in the string. We write this function using the word “length”. For
example, if a = xxxx in the language L1, then

length(a) = 4

Or we could write directly that in a language, such as L3,

length(428) = 3

In any language which includes λ we have

length(λ) = 0

Corollary: For any word w in a language, if length(w) = 0, then w = λ

9 / 22

Redefining Number with length

We can present another definition for L3

L3 = { any finite string of Σ le󰿣ers that, if it has

length more than 1, does not start with a 0 }

This isn’t necessarily a be󰿣er definition, but it illustrates equivalent
languages can be defined in multiple ways.

10 / 22

Adding λ to a finite language

If we look back to L1, which described one or more “x” characters
defining valid words, we may want to expand the language to
include empty string

L4 = {λ x xx xxx xxxx . . .}

Alternatively,

L4 = {xn for n = 0 1 2 3 . . .}

Notice: x0 = λ

11 / 22

Example: Reverse

Definition
Let us introduce the function reverse. If a is a word in some
language, L, then reverse(a) is the same string of le󰿣ers spelled
backward even if this backwards string is not a word in L.

Example

reverse(xxx) = xxx

reverse(xxxxx) = xxxxx

reverse(145) = 541

But let us also note that in L1,
reverse(140) = 041

which is not a word in L1

12 / 22

Example: Palindrome Language

Definition
PALINDROME (P) is a new language over the alphabet

Σ = {a b}

P = {λ, and all strings x | reverse(x) = x}

∴

P = {λ a b aa bb aaa aba bab bbb aaaa abba . . .}

Interesting Properties

1 concatenating two words from P sometimes produces a word
within P . e.g. abba + abba = abbaabba

2 More o󰎗en than not, concatenating two words from P does not
yield a word within P . e.g. aa + aba = aaaba

13 / 22

Kleene Closure (or the Kleene Star)

Definition

• Given an alphabet Σ, we wish to define a language in which
any string of le󰿣ers from Σ is a word, even the null string λ.

• This language shall be known as the closure of the alphabet.
• Symbolically denoted as: Σ∗

Example

If Σ = {x}, then Σ∗ = {λ x xx xxx xxxx . . .}

Example

If Σ = {0 1}, then Σ∗ = {λ 0 1 00 01 10 11 000 001 . . .}

Example

If Σ = {a b c}, then Σ∗ = {λ a b c aa ab ac ba bb bc ca cb cc aaa . . .}
14 / 22

Kleene Closure

• an operation that makes an infinite language or strings of
le󰿣ers out of an alphabet

• infinitely many words, each of a finite length
• o󰎗en ordered by size first, then lexicographically

Definition
If S is a set of words, then S∗ means the set of all finite strings
formed by concatenating words from S. Any word may be used as
o󰎗en as we like, and λ is also included.

Problem
Compare:

ENGLISH-WORDS* and ENGLISH-SENTENCES

15 / 22

Kleene Closure

Example

S = {aa b}
S∗ =?

Example

S = {a ab}
S∗ =?

To prove that a certain word is in the closure language S∗, we must
show how it can be wri󰿣en as a concatenation of words from the
base set S.

16 / 22

Factor

The concatenation of words from a base set S can be viewed as a
factor of a word from closure set S∗

Example

S = {xx xxx}
S∗ = {xn for n = 0 2 3 4 . . .}

Notice how the word x is the only word not in the language S∗

There is also ambiguity in factoring certain strings e.g. xxxxxxx

(xx)(xx)(xxx) or (xx)(xxx)(xx) or (xxx)(xx)(xx)

How can we prove that S only contains repetitions of le󰿣er x not
equal to size of 1?

17 / 22

Proving S∗ contains all xn | n 󲧰 1

Example

S = {xx xxx}
S∗ = {xn for n = 0 2 3 4 . . .}

Proof (by constructive algorithm).

Base: x0 = λ
Base: x2 = xx
Base: x3 = xxx

Factor: x4 = x2 + x2

Factor: x5 = x3 + x2

xn+2 = xn + x2 □

18 / 22

Kleene Closure

The Kleene closure of two sets can end up being the same language

Example

S = {a b ab}
T = {a b bb}

• Both S∗ and T ∗ define languages of all strings of a’s and b’s.
• Any string of a’s and b’s can be factored into syllables (a) and
(b)

Consider ababbabba and abababbbb

19 / 22

+ Notation

If for some reason we wish to modify the concept of closure to refer
to only the concatenation of some non-zero strings from a set S, we
use the notation + instead of ∗

Example

If Σ = {x}, then Σ+ = {x xx xxx . . .}

• This is o󰎗en referred to as positive closure (“one-or-more”)
• If S is a language which contains λ, then S+ = S∗

• If S is a language which doesn’t contain λ, then S+ = S∗ − {λ}

20 / 22

Double Closure

Given S∗, apply its closure: (S∗)∗

• If S is not 󳑘 or {λ}, then S∗ is infinite
• We will be taking the closure of an infinite set
• Arbitrary concatenation of the alphabet, applied twice

Proving S∗ = S∗∗ (by construction).

S = {a b}
s = aababaaaaaba [arbitrary string]
s = (aaba)(baaa)(aaba) [constructed from S∗]
s = [(a)(a)(b)(a)][(b)(a)(a)(a)][(a)(a)(b)(a)] [constructed from S∗∗]
s = (a)(a)(b)(a)(b)(a)(a)(a)(a)(a)(b)(a) [converted from S∗∗ to S∗]
S∗∗ ⊂ S∗ [∀e ∈ S∗∗, e ∈ S∗]
S∗ ⊂ S∗∗ [∀e ∈ S∗, e ∈ S∗∗]
S∗ = S∗∗ □

21 / 22

Homework 1a

1 Consider the language S∗, where S = {aa b}. How many words
does this language have of length 4? of length 5? of length 6?
What can be said in general?

2 Consider the language S∗, where S = {aa aba baa}. Show that
the words aabaa, baaabaaa, and baaaaababaaaa are all in this
language. Can any word in this language be interpreted as a
string of elements from S in two di󰎎erent ways? Can any word
in this language have an odd total number of a’s?

3 Prove that for all sets S,
1 (S+)∗ = (S∗)∗
2 (S+)+ = S+

3 Is (S∗)+ = (S+)∗ for all sets S?

22 / 22

