

R

Languages

Chapter 2 Department of Computer Science

- English: "letters", "words", "sentences"
- Programming: "keywords", "variables", "numbers", "symbols"
- General: *language structure* decision of whether a given string of units is "matched" or *valid*

Important Terms

- *alphabet* finite set of fundamental units out of which we build structures.
- *language* a certain specified set of strings of characters from the alphabet
- words strings which are permissible in the language
- *empty string* or *null string* a string which has no letters (λ)
- *null set* − denoted as Ø

Question

Is there a difference between empty string and an empty language?

An Aside on Set Theory

Claim 1

 $L + \{\lambda\} \neq L$

Claim 2

 $L + \emptyset = L$

This implies that \varnothing is a valid definition for a language

The English Languages

Alphabet

$$\Sigma = \{a \ b \ c \ d \ e \ \dots \ z' - \}$$

Words

ENGLISH-WORDS = {all the words in a standard dictionary}

Problem: How can we represent sentences?

The Real English Languages

Alphabet

 Γ = entries of *ENGLISH-WORDS* + {*space*} + {*punctuation*}

Words (a.k.a. English Sentences)

- Must rely on grammatical rules of English
- There are *infinitely many*
 - I ate one apple.
 - I ate two apples.
 - I ate three apples.

•

We can list all rules of the grammar to give a *finite description* for an *infinite language*. This will make "I ate three Tuesdays" valid!

Defining a Language

Language Defining Rules

- Tell us how to test a string of alphabet letters that we are presented with
- Tell us how to construct all of the words in the language by some clear procedure

Example

 $\Sigma = \{x\}$

$$L_1 = \{x \ xx \ xxx \ xxxx \ \dots\}$$

alternatively,
$$L_1 = \{x^n \text{ for } n = 1 \ 2 \ 3 \ \dots\}$$

Working with a Language

Null String?

A language does not need to accept λ . L_1 doesn't

Concatenation

- Two strings written side by side yield a new string
- x^n concatenated with x^m is x^{n+m}

Symbols

- We can designate a word in a given language by a new symbol
 - Let a = xx and b = xxx
 - Therefore, *ab* = *xxxxxx*
- Two words of *L* concatenated are not guaranteed to produce another word in *L*

Example: Numbers

Example

 $\Sigma = \{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9\}$

 $L_3 = \{ any finite string of \Sigma letters that doesn't start with 0 \}$

A subset of L₃ might *look like*:

 $L_3 = \{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ \ldots \}$

If we want to allow the string (word) 0, we could say:

 $L_3 = \{ any finite string of \Sigma letters that, if it starts with 0, has no more letters after the first \}$

Example: Length

We define the function **length** of a string to be the number of letters in the string. We write this function using the word "length". For example, if a = xxxx in the language L_1 , then

length(a) = 4

Or we could write directly that in a language, such as L_3 ,

length(428) = 3

In any language which includes λ we have

 $length(\lambda) = 0$

Corollary: For any word *w* in a language, if length(*w*) = 0, then $w = \lambda$

We can present another definition for L_3

 $L_3 = \{ \text{ any finite string of } \Sigma \text{ letters that, if it has} \\ \text{ length more than 1, does not start with a 0 } \}$

This isn't necessarily a better definition, but it illustrates equivalent languages can be defined in multiple ways.

If we look back to L_1 , which described one or more "x" characters defining valid words, we may want to expand the language to include *empty string*

 $L_4 = \{\lambda \ x \ xx \ xxx \ xxxx \ \dots\}$

Alternatively,

 $L_4 = \{x^n \text{ for } n = 0 \ 1 \ 2 \ 3 \ \ldots\}$

Notice: $x^0 = \lambda$

Example: Reverse

Definition

Let us introduce the function **reverse**. If a is a word in some language, L, then reverse(a) is the same string of letters spelled backward even if this backwards string is not a word in L.

Example

reverse(xxx) = xxx reverse(xxxx) = xxxxx reverse(145) = 541

But let us also note that in L_1 ,

reverse(140) = 041

which is not a word in L_1

Example: Palindrome Language

Definition

PALINDROME (P) is a new language over the alphabet

 $\Sigma = \{a \ b\}$

 $P = \{\lambda, \text{ and all strings } x \mid \text{reverse}(x) = x\}$

 $P = \{\lambda \ a \ b \ aaa \ abb \ aaa \ abb \ bbb \ aaaa \ abba \ \ldots \}$

Interesting Properties

- concatenating two words from P sometimes produces a word within P. e.g. abba + abba = abbaabba
- More often than not, concatenating two words from P does not yield a word within P. e.g. aa + aba = aaaba

Kleene Closure (or the Kleene Star)

Definition

- Given an alphabet Σ, we wish to define a language in which any string of letters from Σ is a word, even the null string λ.
- This language shall be known as the closure of the alphabet.
- Symbolically denoted as: Σ*

Example

If
$$\Sigma = \{x\}$$
, then $\Sigma^* = \{\lambda x xx xxx xxxx \dots\}$

Example

If
$$\Sigma = \{0 \ 1\}$$
, then $\Sigma^* = \{\lambda \ 0 \ 1 \ 00 \ 01 \ 10 \ 11 \ 000 \ 001 \ \dots\}$

Example

If $\Sigma = \{a \ b \ c\}$, then $\Sigma^* = \{\lambda \ a \ b \ c \ aa \ ab \ ac \ ba \ bb \ bc \ ca \ cb \ cc \ aaa \ \ldots\}$

Kleene Closure

- an **operation** that makes an infinite language or strings of letters out of an alphabet
- infinitely many words, each of a finite length
- often ordered by *size* first, then *lexicographically*

Definition

If *S* is a set of words, then S^* means the set of all finite strings formed by **concatenating** words from *S*. Any word may be used as often as we like, and λ is also included.

Problem

Compare:

ENGLISH-WORDS* and ENGLISH-SENTENCES

Kleene Closure

Example

$$S = \{aa \ b\}$$
$$S^* = ?$$

Example $S = \{a \ ab\}$ $S^* = ?$

To prove that a certain word is in the closure language S^* , we must show how it can be written as a **concatenation** of words from the base set *S*.

Factor

The **concatenation** of words from a base set *S* can be viewed as a *factor* of a word from *closure* set S^*

Example

 $S = \{xx \ xxx\}$ S* = {xⁿ for n = 0 2 3 4 ...}

Notice how the word x is the only word not in the language S^* There is also ambiguity in factoring certain strings e.g. xxxxxxx

(xx)(xx)(xxx) or (xx)(xxx)(xx) or (xxx)(xx)(xx)

How can we **prove** that *S* only contains repetitions of letter *x* not equal to size of 1?

Proving S^* contains all $x^n \mid n \neq 1$

Example

$$S = \{xx \ xxx\}$$

S^{*} = {xⁿ for n = 0 2 3 4 ...}

Proof (by constructive algorithm).

Base: $x^0 = \lambda$ **Base:** $x^2 = xx$ **Base:** $x^3 = xxx$ **Factor:** $x^4 = x^2 + x^2$ **Factor:** $x^5 = x^3 + x^2$ $x^{n+2} = x^n + x^2$

The Kleene closure of two sets can end up being the same language

Example $S = \{a \ b \ ab\}$ $T = \{a \ b \ bb\}$

- Both *S*^{*} and *T*^{*} define languages of all strings of *a*'s and *b*'s.
- Any string of *a*'s and *b*'s can be factored into syllables (*a*) and (*b*)

Consider ababbabba and abababbbb

If for some reason we wish to modify the concept of closure to refer to only the concatenation of some *non-zero* strings from a set S, we use the notation ⁺ instead of ^{*}

Example

If
$$\Sigma = \{x\}$$
, then $\Sigma^+ = \{x \ xx \ xxx \ \ldots\}$

- This is often referred to as positive closure ("one-or-more")
- If *S* is a language which contains λ , then $S^+ = S^*$
- If *S* is a language which doesn't contain λ , then $S^+ = S^* {\lambda}$

Double Closure

Given S^* , apply its closure: $(S^*)^*$

- If *S* is not \emptyset or $\{\lambda\}$, then *S*^{*} is infinite
- We will be taking the *closure* of an infinite set
- Arbitrary concatenation of the alphabet, applied twice

Proving $S^* = S^{**}$ (by construction).

$$S = \{a b\}$$

s = (aaba)(baaa)(aaba)

- s = [(a)(a)(b)(a)][(b)(a)(a)(a)][(a)(a)(b)(a)]
- s = (a)(a)(b)(a)(b)(a)(a)(a)(a)(a)(b)(a)
- $S^{**} \subset S^*$
- $S^* \subset S^{**}$

$$S^* = S^*$$

[arbitrary string] [constructed from S^*] [constructed from S^{**}] [converted from S^{**} to S^*] [$\forall e \in S^{**}, e \in S^*$] [$\forall e \in S^*, e \in S^{**}$]

Homework 1a

- Consider the language S*, where S = {aa b}. How many words does this language have of length 4? of length 5? of length 6? What can be said in general?
- Consider the language S*, where S = {aa aba baa}. Show that the words aabaa, baaabaaa, and baaaaababaaaa are all in this language. Can any word in this language be interpreted as a string of elements from S in two different ways? Can any word in this language have an odd total number of a's?
- Prove that for all sets *S*,

1
$$(S^+)^* = (S^*)^*$$

2 $(S^+)^+ = S^+$

3 Is $(S^*)^+ = (S^+)^*$ for all sets *S*?