CSCI 370 — Midterm Exam Review

Data Representation

- · Concept of words (in regard to architecture)
- Data sizes for x86-64
- Endianess
- Integers
 - Bitwise and Logical Operations, Arithmetic vs. Logical Shift
 - Two's complement vs. Unsigned
 - Integer ranges
 - "Integer Puzzles"
- Floating Point
 - Binary encoding
 - IEEE 754
 - * Normalized vs Denormalized
 - * Special values (Infinity, NaN)
 - * Ranges
 - Floating point arithmetic errors and precision
- Data Lab

Machine Programming

- CISC vs. RISC -- know what is unique
- Definitions: Instruction Set Architecture (ISA), Microarchitecture (uArch)
- Compilation Flow
- Data types in assembly
- Translation of C-code to x86 (and vice versa)
 - Functions (with parameters and return values)
 - Know what callee and caller saved registers means!
 - Addressing Modes
 - * Normal
 - * Displacement
 - * Complete (your favorite)
 - * Address Computation Problems
 - Important Instructions:
 - * leaq
 - * movq
 - * test
 - * cmp
 - x86 condition codes
 - * Carry, Sign, Zero, Overflow
 - * NOTE: do not need to know how flags evaluate to branch conditions
 - * Conditional Branching
 - Implementation of different loops (do-while, while, for)
 - Switch Statements (Lec3:end)
 - * Jump Tables
- Data layout of arrays and structs
- Alignment
- Stack and Heap (direction of growth, location)
- What is a buffer overflow?
- Return Oriented Programming what is a "gadget"?
- Understanding the majority of the x86-64 "cheatsheet" might be useful.

Hardware Implementation, HCL, Y86-64, and Pipelines

- Digital Signals (high voltage vs. low voltage, clock)
- Logic Gates
- Combinational vs. Sequential Circuits
- Hardware Control Language (HCL)
 - Data types: bool, int (word)
 - Statements: assignments, boolean expressions, word expressions
 - Boolean expressions:
 - * Logic operations
 - * Word Comparisons
 - * Set Membership
 - Word expressions (Case)
 - Processor State Registers, memory, PC
- Y86-64
 - Instruction format
 - Register format (4 bits)
 - 5-stage pipeline stages
 - Execution Pattern and Pipeline Registers
- Parallel Implementation
 - Why is parallel pipelining important? What are its limitations?
 - Hazards
 - * Data Hazards
 - * Control Hazards
 - * Stalling Register Modes (Stall vs Bubble vs Normal)
 - Modifications
 - * Pipeline Registers
 - * Data Forwarding Represent Instruction Sequence with and without
 - * Pipeline Control Logic know when to stall/bubble for:
 - · Load/Use Hazard
 - · Return
 - · Mispredicted Branch
 - CPI
 - * What does it mean when CPI is approx. = 1? Greater than 1? Less than 1?
 - * How does branch misprediction, load-use hazards, and returns affect CPI?
 - $\cdot\,$ What are the penalties for each?