
CSCI 330: Final Exam Review
This is intended as a guideline for studying for the final. I wouldn’t have covered something if I didn’t think it
was important. If you are wondering about a topic and you don’t see it here, ask me!
Sample Types of Questions
• Short answer
• Problem solving: Static vs. dynamic scope; Referencing environments; Analyze effects of (a) operand

evaluation order with functional side effects (b) short-circuit evaluation; drawing the stack/activation
records for various programs; Shallow binding, deep binding, ad hoc binding with subprogram
parameters; Parameter passing modes

• Coding: Recursive types, Folding, all OCaml labs

Chapter 7 (Expressions and Assignment Statements)
• Arithmetic expressions: design issues

o operators (unary, binary, ternary)
o operator precedence and associativity
o operand evaluation order
o side effects
o overloaded operators
o type conversions: narrowing/widening, mixed-mode (coercion), explicit
o Boolean expressions, short-circuit

• Assignment statements
o Conditional assignment
o Compound operators
o Assignments as expressions
o List assignments
o Mixed-mode assignments

Chapter 8 (Statement-Level Control Structures)
• algorithms represented by flowcharts can be coded only with two-way selection & pretest logical loops
• Two-way selection statements: design issues

o Form and type of control expression (arithmetic? Boolean?)
o Clause form – how is it delimited? Always compound?
o Nesting selectors

• Multiple-way selection statements: design issues
o Form and type of control (integer? String? Enumeration?)
o Is just one selectable segment executed?
o How are case values specified? Do all values need to be represented?

• Iterative Statements
o Counter-controlled loops: type and scope of loop variable, can loop variable be changed in body?

Are loop variables evaluated once or once every iteration?
o Logically-controlled loops: pre-test or post-test? Can you transfer out of more than one loop? Can

you have multiple entry points?
• Iteration based on data structures
• Unconditional branching
• Guarded commands

Chapter 9 (Subprograms)
• Subprogram fundamentals: definitions, etc.
• Actual/formal parameter correspondence (positional, keyword), default values
• Local referencing environments (stack-dynamic, static local variables)
• Parameter passing modes
• Type checking parameters
• Multi-dimensional arrays as parameters
• Subprogram names as parameters (type-checking, referencing environment)
• Overloaded subprograms, generic subprograms
• Specific design issues for functions

Chapter 10 (Implementing Subprograms)
• General semantics of calls and returns
• Implementing “simple” subprograms – activation records, etc.
• Adding stack-dynamic local variables

o dynamic link
o environment pointer
o call chain
o local offset

• Nested subprograms:
o Static scoping – static chain
o Dynamic scoping: deep access vs shallow access

Chapter 14 (Exception Handling)
• Alternatives to built-in exception handling (how to handle errors in languages w/o exception handling?)
• Advantages to built-in exception handling
• Design issues for exception handling
• Options for continuing after an exception
• What happens with unhandled exceptions

OCaml
• Writing and understanding code with an emphasis on variant types and folding

