Motivation for Doubly-Linked Lists

With a single-link linked list, we need to keep track of a and tail to
make common operations faster.

If we have links pointing backwards (as well as forwards), this makes

keeping track of unnecessary.
L —A L—A —A —h —A
7 3 2 0 8
- ~— ~— — ~—
If we want the , We can just access .prev

Doubly-Linked List Representation

L
{

L — |
1

By making an empty (or “dummy”) head node, we can access the first
element with .next. Similarly, the last element can be accessed with

o

When we have an empty linked-list, the head node will point to itself. This
makes inserting and removing a lot easier since we remove all edge cases.

Insertion into Doubly-Linked List

Let’s insert a node with a value of “10” before the cursor...

First, let’s create a new node and set its links

= new Node<E>(element, .prev,)

Next, we need to reassign our prior node’s next and our next node’s
previous (see highlighted links below)

.hext

.hext.prev
.prev.next

Removal from Doubly-Linked List

We now want to write code which removes the cursor and advances it to
the next node. We assume that cursor is valid

)
)

f
(L
f
t

7
A\

Let’s just label the previous and next first

.prev .hext

)
)

{
L
{
{

7
A\

Now let’s set their links. NOTE: do not change cursor here

.prev .hext

A/\f;d

e

.next.prev = .prev
.prev.next .hext

—~
w
N

(c

Finally, set cursor to advance to its next

o AV

(
i

.hext

Insert:

// using referenced names

Node<E> = .prev;

Node<E> = ;

Node<E> = new Node<E>(val, p, n);
.prev = ;
.next = 5

// using no referenced names
= new Node<E>(val, .prev,)
.next.prev =
.prev.next

++;

1l
“e

- e

// multiple assignments per line (most concise)

= new Node<E>(val, .prev,)
.next.prev = .prev.next = 5
++ 3

b

Remove:

// using referenced names

Node<E> = .prev;
Node<E> = .next;
.prev = p;
.nhext = n;

// using no referenced names
.next.prev = .prev;
.prev.next .hext;
= .hext;

// multiple assignments per line (most concise)
.next.prev = .prev;
= .prev.next = .hext;

