Motivation for Doubly-Linked Lists

With a single-link linked list, we need to keep track of a and tail to
make common operations faster.

If we have links pointing backwards (as well as forwards), this makes

keeping track of unnecessary.
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If we want the , We can just access .prev
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By making an empty (or “dummy”) head node, we can access the first
element with .next. Similarly, the last element can be accessed with
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When we have an empty linked-list, the head node will point to itself. This
makes inserting and removing a lot easier since we remove all edge cases.

Insertion into Doubly-Linked List

Let’s insert a node with a value of “10” before the cursor...

First, let’s create a new node and set its links

= new Node<E>(element, .prev, )

Next, we need to reassign our prior node’s next and our next node’s
previous (see highlighted links below)

.hext

.hext.prev
.prev.next

Removal from Doubly-Linked List

We now want to write code which removes the cursor and advances it to
the next node. We assume that cursor is valid
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Let’s just label the previous and next first

.prev .hext
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Now let’s set their links. NOTE: do not change cursor here

.prev .hext
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.next.prev = .prev
.prev.next .hext
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Finally, set cursor to advance to its next
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Insert:

// using referenced names

Node<E> = .prev;

Node<E> = ;

Node<E> = new Node<E>(val, p, n);
.prev = ;
.next = 5

// using no referenced names
= new Node<E>(val, .prev, )
.next.prev =
.prev.next
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// multiple assignments per line (most concise)

= new Node<E>(val, .prev, )
.next.prev = .prev.next = 5
++ 3
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Remove:

// using referenced names

Node<E> = .prev;
Node<E> = .next;
.prev = p;
.nhext = n;

// using no referenced names
.next.prev = .prev;
.prev.next .hext;
= .hext;

// multiple assignments per line (most concise)
.next.prev = .prev;
= .prev.next = .hext;



