Divide and Conquer Algorithms
Drawing a Ruler

Problem: Draw marks at regular intervals on a line

Write recursive

\textit{drawRuler} (xBegin, xEnd, height)

assuming

\textit{drawMark} (xCoord, height) is written

and a height of 0 indicates no further divisions
Recursive Ruler

• `drawRuler (begin, end, h)`
 • Base case?
 • ...

• A *Divide and Conquer (and Combine)* algorithm
 • Split problem into subproblems
 • Solve subproblems
 • Combine solutions to subproblems to solve whole problem
Iterative Ruler

void
drawRuler (begin, end, incr)
{
 // Start edge
drawMark (begin, END_HEIGHT);
begin += incr;
while (begin != end)
{
 drawMark (begin, ?);
 begin += incr;
}
 // End edge
drawMark (end, END_HEIGHT);
}
Two Sorting Algorithms

• Divide and Conquer Sorting Algorithms
 • Merge Sort
 • Split in half (divide)
 • Sort halves recursively (conquer)
 • Merge sorted halves (combine)
 • \(Worst = Average = O(N \lg N)\)

• Quick Sort
 • Choose pivot value from array
 • Place pivot in final position (divide)
 • Elements to left \(\leq\) pivot
 • Elements to right \(\geq\) pivot
 • Sort 2 sublists recursively (conquer)
 • Average = \(O(N \lg N)\)
 • \(Worst = O(N^2)\)
void mergeSort (int A[], size_t first, size_t last)
{
 if (last - first > 1) {
 size_t mid = first + (last - first) / 2;
 mergeSort (A, first, mid);
 mergeSort (A, mid, last);
 inplace_merge (A + first, A + mid, A + last);
 }
}
Merge Algorithm

• Merge sort requires *merge* algorithm
 • Complexity of merge?

• Out-of-place merge: merge (v, first, mid, last)
 • v[first, mid) sorted
 • v[mid, last) sorted

• Result: v[first, last) sorted
Merge Algorithm (Cont’d)
Merge Algorithm (Cont’d)
Merge Algorithm (Cont’d)

sublist A

sublist B

indexA

indexB

tempVector

last

first

last
Partitioning and Merging of Sublists in Merge Sort

Postorder algorithm
Call Tree for Merge Sort

Call msort()
- recursive call_1 to msort()
- recursive call_2 to msort()
- call_1 merge()

msort() : n/2

msort() : n/4

msort() : n/8

Level_0:

Level_1:

msort() : n/2

msort() : n/4

msort() : n/8

msort() : n/4

Level_2:

msort() : n/8

msort() : n/8

msort() : n/8

Level_3:

msort() : n/8

msort() : n/8

msort() : n/8

Level_i:

...
Quicksort Code

void quickSort (int A[], size_t first, size_t last)
{
 if (last - first > 1) {
 auto i = partition (A, first, last);
 // Pivot is placed in A[i]
 quickSort (A, first, i);
 quickSort (A, i + 1, last);
 }
}

Partition Routine

// will go into details later...

```c
size_t partition (int A[], size_t first, size_t last) {
    median3 (A, first, last - 1);
    int pivot = A[last - 2];
    size_t up = first, down = last - 2;
    for (; ; ) {
        while (A[++up] < pivot) {}  
        while (A[--down] > pivot) {}  
        if (up >= down) break;
        swap (A[up], A[down]);
    }
    swap (A[last - 2], A[up]);
    return up;
}
```
Quicksort

• *Fastest* known sorting algorithm in practice
 • Part of std::sort

 • May be used in cstdlib qsort
 • qsort (void* base, size_t num, size_t size,
 int (*comp)(const void*, const void*))

• Average case: O(N log N)

• *Worst case*: O(N^2)
Quick Sort

• Divide step
 • Pick any element (pivot) \(v \) in \(S \)
 • Partition \(S - \{ v \} \) into two disjoint groups
 \[S_1 = \{ x \in S - \{ v \} \mid x \leq v \} \]
 \[S_2 = \{ x \in S - \{ v \} \mid x \geq v \} \]

• Conquer step: recursively sort \(S_1 \) and \(S_2 \)

• Combine step: list the sorted \(S_1 \), followed by \(v \), followed by sorted \(S_2 \)
Quick Sort...
Quick Sort...
Partitioning

- Partitioning
 - Key step of quicksort algorithm
 - Many ways to implement

- How to pick pivot will be discussed later
Partitioning Strategy

• Want to partition an array A[left .. right]

• Swap pivot and A[right]

• Let $i = \text{left}; \ j = \text{right} - 1$
Partitioning Strategy

• Want to have
 • $A[k] \leq \text{pivot}, \text{ for } k < i$
 • $A[k] \geq \text{pivot}, \text{ for } k > j$

• While $i < j$
 • Move i right, skipping over elements smaller than pivot
 • Move j left, skipping over elements greater than pivot
 • When both i and j have stopped
 • $A[i] \geq \text{pivot}$
 • $A[j] \leq \text{pivot}$
Partitioning Strategy

• When i and j have stopped and i is to the left of j
 • Swap A[i] and A[j]

 • After swapping
 • A[i] <= pivot
 • A[j] >= pivot

 • Repeat the process until i and j cross

\[
\begin{array}{cccccc}
5 & 6 & 4 & 19 & 3 & 12 \\
\uparrow & & & & & \text{swap} \\
5 & 3 & 4 & 19 & 6 & 12 \\
\end{array}
\]
Partitioning Strategy

• When i and j have crossed
 • Swap $A[i]$ and pivot

• Result
 • $A[p] \leq pivot$, for $p < i$
 • $A[p] \geq pivot$, for $p > i$
Small arrays

• Cutoff value for small arrays

• Depends on
 • Time to make a recursive call
 • Architecture
 • Compiler
 • Other factors
Picking the Pivot

• Use the first element as pivot
 • OK if the input is random
 • What happens if the input is already sorted?
 • Can result in $O(N^2)$ behavior

• Choose the pivot randomly
 • Generally safe
 • Random number generation can be expensive
Picking the Pivot

• Use the median of the array

 • Partitioning always cuts the array into roughly half

• An *optimal* quicksort (O(N log N))

• How do you find the median?
Pivot: Median of Three

- Compare just three elements: the leftmost, rightmost and center
- Swap these elements if necessary so that
 - \(A[\text{left}] = \text{Smallest} \)
 - \(A[\text{right}] = \text{Largest} \)
 - \(A[\text{center}] = \text{Median of three} \)
- Pick \(A[\text{center}] \) as the pivot
- Swap \(A[\text{center}] \) and \(A[\text{right} - 1] \) so that pivot is at second-to-last position

```c
int center = ( left + right ) / 2;
if( a[ center ] < a[ left ] )
    swap( a[ left ], a[ center ] );
if( a[ right ] < a[ left ] )
    swap( a[ left ], a[ right ] );
if( a[ right ] < a[ center ] )
    swap( a[ center ], a[ right ] );

// Place pivot at position right - 1
swap( a[ center ], a[ right - 1 ] );
```
Pivot: median of three

Swap A[center] and A[right]

Choose A[center] as pivot

Swap pivot and A[right – 1]

Only need to partition A[left + 1, ..., right – 2]. Why?
Main Quicksort Routine

```c
if( left + 10 <= right )
{
    Comparable pivot = median3( a, left, right );

    // Begin partitioning
    int i = left, j = right - 1;
    for( ; ; )
    {
        while( a[ ++i ] < pivot ) { }
        while( pivot < a[ --j ] ) { }
        if( i < j )
            swap( a[ i ], a[ j ] );
        else
            break;
    }
    swap( a[ i ], a[ right - 1 ] ); // Restore pivot
    quicksort( a, left, i - 1 ); // Sort small elements
    quicksort( a, i + 1, right ); // Sort large elements
}
else // Do an insertion sort on the subarray
    insertionSort( a, left, right );
```
Partitioning Part

• Works only if pivot is picked as *median-of-three*

 • \(A[\text{left}] \leq \text{pivot} \) and \(A[\text{right}] \geq \text{pivot}\)

 • Thus, only need to partition \(A[\text{left} + 1, \ldots, \text{right} - 2]\)

• \(j\) will not run past the end
 • because \(A[\text{left}] \leq \text{pivot}\)

• \(i\) will not run past the end
 • because \(A[\text{right}-1] = \text{pivot}\)

```c
int i = left, j = right - 1;
for( ; ; )
{
    while( a[ ++i ] < pivot ) { }
    while( pivot < a[ --j ] ) { }
    if( i < j )
        swap( a[ i ], a[ j ] );
    else
        break;
}
```
Quicksort vs. Mergesort

• quicksort and mergesort are $O(N \log N)$ in the average case

• Why is quicksort *faster* than mergesort?
 • Inner loop

• No extra juggling as in mergesort

```c
int i = left, j = right - 1;
for( ; ; )
{
    while( a[ ++i ] < pivot ) {}
    while( pivot < a[ --j ] ) {}
    if( i < j )
        swap( a[ i ], a[ j ] );
    else
        break;
}
```
Analysis

• Assumptions
 • A random pivot (no median-of-three partitioning)
 • No cutoff for small arrays

• Running time
 • pivot selection: constant time $O(1)$
 • partitioning: linear time $O(N)$
 • running time of two recursive calls

• $T(N) = T(i) + T(N - i - 1) + cN$ where c is a constant
 • i: number of elements in $S1$
Worst-Case Analysis

• What will be the worst case?
 • Pivot is smallest element, all the time
 • Partition is always unbalanced

\[
T(N) = T(N-1) + cN \\
T(N-1) = T(N-2) + c(N-1) \\
T(N-2) = T(N-3) + c(N-2) \\
\vdots \\
T(2) = T(1) + c(2) \\
T(N) = T(1) + c \sum_{i=2}^{N} i = O(N^2)
\]
Best-case Analysis

• What will be the best case?
 • Partition is perfectly balanced
 • Pivot is always in the middle (median of the array)

\[
\begin{align*}
T(N) &= 2T(N/2) + cN \\
T(N) &= T(N/2) + c \\
T(N/2) &= T(N/4) + c \\
T(N/4) &= T(N/8) + c \\
&\vdots \\
T(2) &= T(1) + c \\
T(N) &= T(1) + c \log N \\
T(N) &= cN \log N + N = O(N \log N)
\end{align*}
\]
Efficiency of Quick Sort

• Best and worst case recurrences
 • Another way to solve them

• Best
 • \(T(N) = 2 \times T(N/2) + N; \ T(1) = 1 \)
 • \(T(N) = 2 \times (2 \times T(N/4) + N/2) + N \)
 = \(2 \times (2 \times (2 \times T(N/8) + N/4) + N/2) + N \)
 = \(2^k \times T(N/2^k) + k \times N \)
 • \(k = \log(N) \rightarrow T(N) = N \times T(1) + \log(N) \times N \)
 = \(O(N \log(N)) \)

• Worst
 • \(T(N) = T(N-1) + N; \ T(1) = 1 \)
 • \(T(N) = ? \)
Average-Case Analysis

• Difficult

• Average running time is $O(N \lg N)$
Finding k^{th} Smallest Element

• Compute k^{th} order statistic
 • $k = 1$ is min
 • $k = N$ is max

• Partition based on some pivot value
 • $i = \text{partition} \ (A, \ \text{left, right})$
 • if i matches k return $A[i]$ // Assuming 1-based
 • Recurse on left if $k < i$
 • Recurse on right if $k > i$
 • Find $(k - i)^{th}$ smallest

| values $\leq k^{th}$Smallest | k^{th}Smallest | values $\geq k^{th}$Smallest |